Рубрика «machine learning» - 3

Собрали главные события недели с 21 по 26 июля 2025 года в российском AI-сегменте: технические прорывы, корпоративные внедрения и неожиданные результаты соревнований человека с машиной.

TabM от Yandex Research превзошел градиентный бустинг на табличных данных

Команда Артема Бабенко из Yandex Research представила TabM (Tabular Mixer) — архитектуру, специально разработанную для табличных данных. В отличие от попыток адаптировать трансформеры, исследователи создали решение с нуля.

Результаты впечатляют:

Аналитический центр red_mad_robot разобрал объёмную научную статью «Advances and Challenges in Foundation Agents» от группы исследователей из передовых международных университетов и технологических компаний. Работа предлагает новый взгляд на текущее состояние и развитие «интеллектуальных агентов», которые могут адаптироваться к множеству задач и контекстов. Рассказываем, какие идеи лежат в основе Foundation Agents, с какими проблемами предстоит столкнуться, и что ждёт нас в будущем.

Читать полностью »

Введение

Прошлым летом в свет вышла новая архитектура нейронных сетей под названием Kolmogorov-Arnold Networks (KAN). Основная статья есть в открытом доступе на архиве по следующей ссылке. На момент выхода статьи эта новость произвела фурор в мире машинного обучение, так как KAN показывали существенный прирост в качестве аппроксимации различных сложных функций. На фото ниже видно, что ошибка новых сетей падает значительно быстрее при увеличении числа параметров.

Читать полностью »

LIME (Local Interpretable Model-Agnostic Explanations) — популярный модет в решении задачи интерпретации. Он основан на простой идее — приблизить прогнозы сложного оценщика (например, нейронной сети) простым — обычно линейной/логистической регрессией.

Применить LIME можно из коробки при помощи одноименной библиотеки [lime](https://github.com/marcotcr/lime). Однако, при применении LIME к, в частности, к временным рядам возникают особенности:

  • При интерпретации нужно учесть, что временные ряды — это структурированные последовательности.

  • Читать полностью »

Что важнее: создать продукт, или доставить его до пользователя? Оба этапа необходимы. Сегодня обсудим второй. Как нам построить поисковую e-com систему.

Покажем, что в слово логистика товара входят сложные задачи не только: перевезти наушники из Китая в Америку, но и настройка поисковой выдачи по запросу.

Быстро соберем поисковой MVP-сервис. Дообучим модель E5 на реальных данных от Amazon. Определим метрики качества и сравним BM25, pretrain E5 и fine-tune E5. Так же взглянем глазами с отладочной информациейЧитать полностью »

У каждого наступает момент, когда нужно быстро освежить в памяти огромный пласт информации по всему ML. Причины разные - подготовка к собеседованию, начало преподавания или просто найти вдохновение.

Времени мало, объема много, цели амбициозные - нужно научиться легко и быстро объяснять, но так же не лишая полноты!

Обращу внимание, самый действенный способ разобраться и запомнить - это своими руками поисследовать задачу! Это самое важное, оно происходит в секции с кодом.

Будет здорово получить ваши задачи и в следующих выпусках разобрать!

Читать полностью »

Поговорим об методике дообучения LLM… спортсменке, комсомолке и просто красавице - LoRA, которая если и не снимается в кино, то может сделать фильмы качественней и интереснее для зрителя. Исторические данные проката и состава творческих групп в перспективе позволяют работать с ансамблевыми моделями машинного обучения для прогнозирования сборов и просмотров в кино, и улучшать данные и путем их подбора «гиперпараметров»Читать полностью »

RecSys + DSSM + FPSLoss is all you need - 1

Упрощать и искать похожие детали, очень полезный навык! Предлагаю быстро пробежаться и попробовать найти ту самую серебряную пулю в RecSys !

Введение

Читать полностью »

Автор статьи: Александр Летуновский

Проблематика

Современные крупные организации сталкиваются с большим числом ИТ‑инцидентов — счет может идти на тысячи в месяц. Инциденты нередко повторяются со временем, однако найти похожий случай в базе знаний или в системе регистрации инцидентов непросто: стандартный поиск по ключевым словам часто неэффективен, а «держать в голове» детали всех инцидентов невозможно.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js