Рубрика «reinforcement learning»

Всем привет! Недавно я познакомился с курсом по глубокому обучению с подкреплением от HuggingFace Deep Reinforcement Learning Course и захотел сделать выжимку самого интересного. Эта статья — своего рода шпаргалка по основам Reinforcement Learning (RL) и одному из ключевых алгоритмов — PPO, который лежит в основе тонкой настройки современных LLM (Large Language Models).

Вы наверняка слышали про такие модели, как o1 от OpenAI или QwQ от Alibaba. Их "рассуждающие" способности во многом — результат применения RL. Давайте разберемся, как обычный принцип обучения, известный по играм вроде AlphaGo, помогает языковым моделям стать умнее.Читать полностью »

Для меня разобраться в базовых концепциях Reinforcement Learning оказалось не так просто, особенно сложными оказались функции Беллмана. Эта статья — моя попытка систематизировать материал и объяснить себе (и, возможно, другим), что, откуда и почему берется. Будет здорово, если она поможет кому-то разложить все по полочкам.

¯_(ツ)_/¯

Полезные ссылки:
Practical RL (ШАД) (самые полезные материалы были тут)
Лекция №15 "Обучение с подкреплением"
Тренировки. Лекция 3: Введение в обучение с подкреплением
Читать полностью »

IoT-сети проектировали для миллионов устройств, но они захлебываются уже от тысяч. Когда в нашем районе на секунду моргнул свет, 10 000 умных счетчиков одновременно потеряли связь и начали переподключаться. Три четверти так и не смогли выйти в эфир. Проблема в RACH — канале случайного доступа. При массовых подключениях он превращается в узкое горлышко, куда каждый пытается прорваться первым.

Читать полностью »

Привет!
Меня зовут Роман, я NLP-инженер в Сбере. Занимаюсь мультиагентными системами и работаю с LLM в проде. Сегодня расскажу про одну из самых интересных статей июня по версии Huggingface Daily Papers — Reflect, Retry, Reward: Self-Improving LLMs via Reinforcement Learning.

TL;DR

Авторы предлагают простой, но мощный метод: если первая попытка модели провалилась, она должна написать краткую саморефлексию, а затем сделать повторную попытку. Если она успешна — награду получают только токены саморефлексии.

Читать полностью »

Новый метод поиска от Sakana: расширение inference-time scaling и коллективный разум - 1

Аналитический центр red_mad_robot продолжает разбирать исследования японской лаборатории Sakana AI — в прошлый разЧитать полностью »

Аналитический центр red_mad_robot разобрал объёмную научную статью «Advances and Challenges in Foundation Agents» от группы исследователей из передовых международных университетов и технологических компаний. Работа предлагает новый взгляд на текущее состояние и развитие «интеллектуальных агентов», которые могут адаптироваться к множеству задач и контекстов. Рассказываем, какие идеи лежат в основе Foundation Agents, с какими проблемами предстоит столкнуться, и что ждёт нас в будущем.

Читать полностью »
LiberalMind 1.5 новая LLM из России - 1

С чего все начиналось?

Читать полностью »

Когда я пишу новости про ИИ, то часто сталкиваюсь с проблемой: они пестрят техническими терминами, которые не всегда понятны даже людям использующим ИИ регулярно. SFT, MoE, RL/RLHF/DPO, миллионы их.

Я захотел описать самые популярные термины простым русским языком, чтобы каждый, даже нетехнический человек, мог разобраться в самой главной технологии современности. Чтобы, когда я пишу на Хабр или куда-то ещё, для сложных терминов я сразу мог бы дать ссылку на понятное и простое объяснение.

Читать полностью »

Привет. Я Артур Саакян, главный специалист по анализу данных и машинному обучению в ПГК Диджитал. Мы разрабатываем уникальные цифровые продукты для железнодорожных перевозок, такие как оптимизация ЖД перевозок, навигатор, ЖД карты, цифровой вагон и так далее.

В этой статье опишу подход к оптимизации расписания поездов в реальном времени при помощи обучения с подкреплением (RL), который применим и к российским грузовым ж/д перевозкам, но пока не используется. Тезисы статьи:

  1. Перепланирование расписания движения поездов (Train Timetable Rescheduling)

  2. Коротко об RL и Q-learning

  3. Моделирование железнодорожной средыЧитать полностью »

Добрый день, уважаемыее!

Я хочу поделиться с вами очень интересным проектом, над которым работал в последнее время.

В первой статье я не буду сильно углубляться в технические подробности, а вместо этого постараюсь провести вас по пути, который я прошел при реализации своего пайплайна для обучения нейросеток, сражающихся друг с другом на арене. Весь код доступен на моем GitHub и готов к использованию, поэтому вы сразу сможете обучить чемпиона и поучаствовать в сражении!

Готовы? Тогда - вперед!

Читать полностью »

https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js