Сегодня ни один крупный проект в области машинного обучения (ML) не обходится без фреймворков — готовых наборов библиотек, в которых базовые алгоритмы уже оптимизированы для различных архитектур. Выбор правильного фреймворка не только упрощает разработку, но и определяет успех проектов по внедрению искусственного интеллекта.
Рубрика «scikit-learn»
Лучшие фреймворки для машинного обучения в 2025 году
2025-09-25 в 7:46, admin, рубрики: catboost, jax, LightGBM, ml, pytorch, scikit-learn, TensorFlow, xgboost, фреймворкиНейросеть приближается к опыту профессионального дерматолога
2025-07-03 в 14:21, admin, рубрики: opencv, scikit-learn, красота и здоровье, медицина, нейросети, поиск по изображениям, приложения, разработка приложений, свёрточные сети, стартапыНаконец наступило лето, а с ним и пора отпусков. Уезжая на южные моря, не забывайте: большинство из нас имеет типичную для северянина кожу с пониженным содержанием меланина — пигмента, отвечающего за защиту от ультрафиолета. Если кожа отреагировала непонятным новообразованием, вызывающим опасения, теперь можно проконсультироваться с искусственным интеллектом. Он предварительно осмотрит кожу и посоветует, бежать ли ко врачу, за которым, конечно, всегда последнее слово. К слову, данная медицинская ИИ-технология, как и публикация, не является медицинской рекомендацией: диагноз ставит лечащий врач.
Фундаментальные вопросы по ML-DL, часть 1: Вопрос → Краткий ответ → Разбор → Пример кода. Линейки. Байес. Регуляризация
2025-06-15 в 2:10, admin, рубрики: data science, machine learning, ml-интервью, naive bayes, python, scikit-learn, SVM, Алгоритмы, линейная регрессия, регуляризацияУ каждого наступает момент, когда нужно быстро освежить в памяти огромный пласт информации по всему ML. Причины разные - подготовка к собеседованию, начало преподавания или просто найти вдохновение.
Времени мало, объема много, цели амбициозные - нужно научиться легко и быстро объяснять, но так же не лишая полноты!
Обращу внимание, самый действенный способ разобраться и запомнить - это своими руками поисследовать задачу! Это самое важное, оно происходит в секции с кодом.
Будет здорово получить ваши задачи и в следующих выпусках разобрать!
Как я сделала свой первый AI-продукт с ChatGPT и капелькой любви
2025-04-16 в 20:06, admin, рубрики: AI-Product, api, chatgpt-4, data science, flask, logistic regression, ml, python3, scikit-learnВ этой статье я расскажу о моем опыте самостоятельного изучения основ Python и Machine Learning и создании первого проекта OneLove на базе собственной модели искусственного интеллекта.
Кто я и зачем мне это было нужно
Мне 51 год, и я работаю тестировщицей в банке. По образованию я экономист. У меня нет особых навыков программирования. Были попытки учить Python и Java, но без практического применения. По работе немного пишу на JS для авто-тестов в Cypress фреймворке, тестирую UI и API — так что базовое понимание, как всё устроено, у меня есть.
Решение задачи классификации при помощи Deep Learning и классического Machine Learning
2024-12-30 в 22:15, admin, рубрики: benchmark, scikit-learn, TensorFlowНебольшой бенчмарк (вроде этого): генерируем данные, потом тренируем на них нейросеть (DL - deep learning) и статистические модели (ML - machine learning). Оценивать результат будем по точности (Confusion Matrix) и контурному графику Decision Boundary, а также по времени тренировки. Мы классифицируем синтетические данные тремя способами (на разном количестве данных, от 1000 до 100 000 примеров):
-
DL модель с одним слоем из 8 нейронов
-
Support Vector Classifier
-
Decision Tree Classifier
Как можно ускорить Python сегодня
2022-12-31 в 10:00, admin, рубрики: cupy, gpgpu, gpu, intel, numba, python, ruvds_перевод, scikit-learn, Блог компании RUVDS.com, многопоточность, ускорители вычислений
Python не перестаёт удивлять многих своей гибкостью и эффективностью. Лично я являюсь приверженцем С и Fortran, а также серьёзно увлекаюсь C++, поскольку эти языки позволяют добиться высокого быстродействия. Python тоже предлагает такие возможности, но дополнительно выделяется удобством, за что я его и люблю.
Этот инструмент способен обеспечивать хорошее быстродействие, поскольку имеет в арсенале ключевые оптимизированные библиотеки, а также возможность динамической компиляции основного кода, который предварительно не компилировался. Однако скорость Python значительно падает, когда дело доходит до обработки крупных датасетов или более сложных алгоритмов. В текущей статье мы разберём:
- Почему столь важно думать о «будущем разнородных вычислений».
- Две ключевых сложности, которые необходимо преодолеть в открытом решении.
- Параллельное выполнение задач для более эффективного задействования CPU.
- Использование ускорителя для дополнительного повышения быстродействия.
Один только третий пункт позволил увеличить быстродействие в 12 раз притом, что четвёртый позволяет добиться ещё большего за счёт ускорителя. Эти простые техники могут оказаться бесценными при работе с Python, когда требуется добиться дополнительного ускорения программы. Описанные здесь приёмы позволяют нам уверенно продвигаться вперёд без длительного ожидания результатов.Читать полностью »
Восстанавливаем результаты выборов в Государственную думу 2021 года с помощью машинного обучения
2021-11-13 в 15:29, admin, рубрики: big data, data science, pandas, plotly, python, scikit-learn, Алгоритмы, визуализация данных, выборы, Государственная дума, Инфографика, искусственный интеллект, кластеризация, машинное обучение
Результаты выборов в государственную думу, которые проходили 17-19 сентября 2021 вызывают сомнения у многих экспертов. Независимый электоральный аналитик Читать полностью »
Сертификация по программе IBM Data Science Professional Certificate
2020-02-07 в 8:17, admin, рубрики: analysis data, classification, data science, data visualization, foursquare, location data, machine learning, ml, pandas, python, scikit-learn, визуализация данных, машинное обучениеСтатья является кратким обзором о сертификации по программе IBM Data Science Professional Certificate.
Будучи новичком в Python, мне пришлось столкнуться с реализацией задач:
- Загрузка и парсинг HTML таблиц
- Очистка загруженных данных
- Поиск географических координат по адресу объекта
- Загрузка и обработка GEOJSON
- Построение интерактивных тепловых карт (heat map)
- Построение интерактивных фоновых картограмм (choropleth map)
- Преобразование географических координат между сферической WGS84 и картезианский системой координат UTM
- Представление пространственных географических объектов в виде гексагональная сетки окружностей
- Поиск географических объектов, расположенных на определенном расстоянии от точки
- Привязка географических объектов к полигонам сложной формы на поверхности
- Описательные статистический анализ
- Анализ категорийных переменных и визуализация результатов
- Корреляционный анализ и визуализация результатов
- Сегментация с использованием k-Mean кластеризации и elbow метода
- Анализ и визуализация кластеров
Kaggle: не можем ходить — будем бегать
2019-03-06 в 5:22, admin, рубрики: cnn, data mining, gru, kaggle, keras, LightGBM, LSTM, machine learning, RNN, scikit-learn, Блог компании Singularis, искусственный интеллект, машинное обучение, рекуррентная нейронная сеть, финансы в ITНасколько сложна тема машинного обучения? Если Вы неплохо математически подкованы, но объем знаний о машинном обучении стремится к нулю, как далеко Вы сможете зайти в серьезном конкурсе на платформе Kaggle?
Как без особенных усилий создать ИИ-расиста
2019-01-17 в 14:48, admin, рубрики: ConceptNet Numberbatch, glove, matplotlib, numpy, pandas, python, scikit-learn, scipy, seaborn, word2vec, анализ тональности, дерево синтаксического анализа, искусственный интеллект, классификатор, машинное обучение, сентимент-анализПредостерегающий урок.
Сделаем классификатор тональности!
Анализ тональности (сентимент-анализ) — очень распространённая задача в обработке естественного языка (NLP), и это неудивительно. Для бизнеса важно понимать, какие мнения высказывают люди: положительные или отрицательные. Такой анализ используется для мониторинга социальных сетей, обратной связи с клиентами и даже в алгоритмической биржевой торговле (в результате боты покупают акции Berkshire Hathaway после публикации положительных отзывов о роли Энн Хэтэуэй в последнем фильме).
Метод анализа иногда слишком упрощён, но это один из самых простых способов получить измеримые результаты. Просто подаёте текст — и на выходе положительные и отрицательные оценки. Не нужно разбираться с деревом синтаксического анализа, строить граф или какое-то другое сложное представление.
Читать полностью »

