Рубрика «catboost»

Кратко:

22 сентября 2025г. вышла версия 3.10 XGBoost. Основной фишкой новой версии стал "категориальный ре-кодер(categorical re-coder)". Он сохраняет категории в модели и так же может перекодировать данные на этапе инференса. И целью этой статьи является сравнить возможности новой версии XGBoost c лидером обработки категориальных данных, CatBoost.

Основные вопросы:

  • Кто обучает на сырых данных?

  • Что такое этот категориальный ре-кодер?

  • Можно ли обучить модель полностью на сырых данных и получить приемлемый результат?Читать полностью »

ESP32 давно зарекомендовал себя как универсальный микроконтроллер для IoT: он умеет работать с Wi-Fi и Bluetooth, управлять сенсорами и исполнительными устройствами. Но за последние годы стало ясно, что даже на таких простых устройствах можно запускать алгоритмы машинного обучения.

В этой статье рассмотрим, как на ESP32 можно реализовать три базовых алгоритма классификациидерево решений, метод К-ближайших соседей (KNN) и полносвязную нейросеть на TensorFlow Lite.

Для эксперимента использовался датчик цвета GY-31 (TCS230)Читать полностью »

Сегодня ни один крупный проект в области машинного обучения (ML) не обходится без фреймворков — готовых наборов библиотек, в которых базовые алгоритмы уже оптимизированы для различных архитектур. Выбор правильного фреймворка не только упрощает разработку, но и определяет успех проектов по внедрению искусственного интеллекта.

Читать полностью »

#Импортируем все необходимые библиотеки

import pandas as pd
from catboost import CatBoostClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import json
# 🔕 Отключаем предупреждения, чтобы не загромождали вывод


import warnings
warnings.filterwarnings('ignore')

Читать полностью »
Путь, который занял 100* лет: встречаем CatBoost 1.0.0 - 1

Всем привет. Меня зовут Станислав Кириллов, я работаю в команде, которая отвечает за развитие библиотеки машинного обучения CatBoost. Мы впервые поделились ей с сообществом четыре года назад — хотя мы привыкли строить бинарные деревья, поэтому и отсчёт лет предпочитаем вести так же. Это шутка, конечно, но «столетие» — хороший повод для выпуска первой «production ready» версии библиотеки с символичным номером 1.0.0.

Сегодня я кратко отвечу, почему мы считаем выпуск версии 1.0.0 важной вехой, и подсвечу главные изменения (и в новой версии, и в целом за год). А уже завтра выступлю с рассказом на встрече, которая будет целиком и полностью посвящена практике применения CatBoost и противостоянию нейросетей и градиентного бустинга. Если эти слова для вас что-то значат, то добро пожаловать под кат.

Читать полностью »

Что влияет на скорость работы программ на C++ и как её добиться при высоком уровне кода? Ведущий разработчик библиотеки CatBoost Евгений Петров ответил на эти вопросы на примерах и иллюстрациях из опыта работы над CatBoost для x86_64.

Видео доклада

— Всем привет. Я занимаюсь оптимизацией для CPU библиотеки машинного обучения CatBoost. Основная часть нашей библиотеки написана на C++. Сегодня расскажу, какими простыми способами мы добиваемся скорости.

Оптимизация C++: совмещаем скорость и высокий уровень. Доклад Яндекса - 1
Читать полностью »

Привет.

Хочу представить вам небольшой проект, который я написал вместо во время сессии.

Суть такова: это классификатор, определяющий наличие стеганографии в изображении. Сразу стоит отметить, что классификатор получился довольно простым: он работает с методом LSB, где заменяется один последний бит 8-битного RGB изображения, и проверялся только на полностью заполненных стегоконтейнерах.
Поиграть с тем, что получилось, можно тут. Примеры картинок (кстати, принимаются только png) есть здесь.

Читать полностью »

Как я решал соревнование по машинному обучению data-like - 1

Привет. Недавно прошло соревнование от Тинькофф и McKinsey. Конкурс проходил в два этапа: первый — отборочный, в kaggle формате, т.е. отсылаешь предсказания — получаешь оценку качества предсказания; побеждает тот, у кого лучше оценка. Второй — онсайт хакатон в Москве, на который проходит топ 20 команд первого этапа. В этой статье я расскажу об отборочном этапе, где мне удалось занять первое место и выиграть макбук. Команда на лидерборде называлась "дети Лёши".

Соревнование проходило с 19 сентября до 12 октября. Я начал решать ровно за неделю до конца и решал почти фулл-тайм.

Краткое описание соревнования:

Летом в банковском приложении Тинькофф появились stories (как в Instagram). На story можно отреагировать лайком, дизлайком, скипнуть или просмотреть до конца. Задача предсказать реакцию пользователя на story.

Соревнование по большей части табличное, но в самих историях есть текст и картинки.

Читать полностью »

Меня зовут Стас Кириллов, я ведущий разработчик в группе ML-платформ в Яндексе. Мы занимаемся разработкой инструментов машинного обучения, поддержкой и развитием инфраструктуры для них. Ниже — мой недавний доклад о том, как устроена библиотека CatBoost. В докладе я рассказал о входных точках и особенностях кода для тех, кто хочет его понять или стать нашим контрибьютором.

— CatBoost у нас живет на GitHub под лицензией Apache 2.0, то есть открыт и бесплатен для всех. Проект активно развивается, сейчас у нашего репозитория больше четырех тысяч звездочек. CatBoost написан на C++, это библиотека для градиентного бустинга на деревьях решений. В ней поддержано несколько видов деревьев, в том числе так называемые «симметричные» деревья, которые используются в библиотеке по умолчанию.

Читать полностью »

В феврале-марте 2019 года проходил конкурс по ранжированию ленты социальной сети SNA Hackathon 2019, в котором наша команда заняла первое место. В статье я расскажу про организацию конкурса, методах, которые мы попробовали, и настройках catboost для обучения на больших данных.

SNA Hackathon 2019 - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js