Рубрика «machine learning» - 2

Привет. Меня зовут Нафиса Валиева. Я младший разработчик в MWS AI и Пситехлабе, студентка 3го курса ПМ-ПУ СПбГУ. Этот пост — текстовый вариант моего выступления на Дата Фесте. Я расскажу вам, как мы в команде Пситехлаб переводили интересный датасет с английского на русский с помощью больших языковых моделей (далее - БЯМ). Сам подход основан на ранней работе [1] нашего руководителя. Отличие в том, что здесь мы детально анализируем поведение различных БЯМ.

Зачем это вообще и что за датасет такой

Читать полностью »

Привет, друзья! Добро пожаловать в новый туториал из серии практических материалов по explanable AI (интерпретируемости моделей). Он посвящен методу интерпретации на основе вмешательства — RISE. В этом материале разобрана теоретическая постановка метода, подчеркнуты красивые математические идеи и переходы, и, конечно, реализован код для практики. Приглашаю к чтению! Ноутбук к туториалу доступен на гитхаб.

Введение

Методы интерпретации на основе вмешательства основаны на идее ответа на вопрос: на вопрос:

Читать полностью »

Представьте, что ваши мысли, которые вы проговариваете про себя, переводятся в текст на экране. Без единого слова и движений губ — просто сигналы мозга, пойманные и расшифрованные. Как-то не по себе, не так ли? Между тем это не сюжет фантастического фильма, а реальность, созданная учеными из Стэнфордского университета: они разработали нейроинтерфейс, способный услышать «внутренний голос».

Читать полностью »

Искусственный интеллект давно вышел за рамки научной фантастики и стал частью нашей жизни — от поисковых систем до чат-ботов и голосовых помощников. Но у этого удобства есть немалая цена: для генерации ответа ИИ расходует значительные вычислительные ресурсы и энергию.

Читать полностью »

Ревью кода с помощью AI в глазах автора

Ревью кода с помощью AI в глазах автора

Введение: почему это важно именно сейчас

Читать полностью »

👋 Привет!

Меня зовут Никита Горячев, я Research Engineer в WB, последние несколько лет работаю на стыке RecSys, LLM и мультимодальных моделей. Каждый день мы обрабатываем миллиарды событий, а модели, которые мы внедряем, напрямую влияют на CTR, удержание и конверсию, принося немало дополнительной выручки.

До этого я успел поработать в AI-стартапе в Palo Alto, где занимался голосовыми агентами (ASR/TTS), и в МТС, где мы строили AI-экосистему. Ранее в Сбере я занимался созданием единого RecSys SDK для всей экосистемы (от SberMegaMarket до Okko и Zvuk), а ещё раньше — развивал персонализацию и ML в ритейле.

Читать полностью »

Индустрия ИИ переживает рекордный бум: каждую неделю появляются новые модели, а заголовки пестрят новостями о многомиллионных контрактах и громких переходах звёздных исследователей. Прорывы происходят на всех уровнях: от чипов и инфраструктуры (NVIDIA и др.) до моделей и инструментов вроде Cursor или Windsurf.

Но у российских разработчиков выбор заметно ýже: ограничения, VPN, трудности с оплатой. Мы решили это изменить и создали KodaЧитать полностью »

Как мы обучали модели для кода GigaCode - 1

Привет, Хабр Меня зовут Дмитрий Бабаев, я руководитель R&D GigaCode в Сбере. Сегодня расскажу о том, как мы создавали ИИ‑помощника для программистов задолго до того, как это стало мейнстримом.

Читать полностью »

В последние годы большие языковые модели кардинально изменили ландшафт искусственного интеллекта, открывая невероятные возможности для автоматизации текстовых задач. Однако, несмотря на впечатляющие успехи, одна из ключевых проблем остаётся нерешённой — модели часто допускают логические ошибки, создают неясные или избыточные формулировки, а также генерируют тексты с низкой степенью доверия к собственным ответам.

В своей практике я столкнулся с необходимостью повышения качества генерации без постоянного ручного контроля и затратных этапов дообучения. Это подтолкнуло меня к идее нового подхода — Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js