Мы частенько шутим с коллегами , что любые действия можно поделить на «обезьяньи» и «smart»Читать полностью »
Мы частенько шутим с коллегами , что любые действия можно поделить на «обезьяньи» и «smart»Читать полностью »
Многие из нас мечтали бы заглянуть в будущее — ведь это по-настоящему полезный навык. А что, если я скажу, что при помощи математики можно приблизиться к этой мечте? Да, с некоторыми оговорками, но в этой статье мы попробуем почувствовать себя настоящим Докторам Стрэнджам и предсказать какую кассу соберет фильм при определенном бюджете.
Сегодня мы простыми словами разберёмся, что такое линейная регрессия и напишем код на Python, который демонстрирует работу линейной регрессии.

Всем привет!
Недавно я участвовал в олимпиаде по искусственному интеллекту на Python и там было много интересных задач, но самая интересная это про звезды на небе: "Дано фото звездного неба с земли. Задача: определить количество звёзд на небе"
Вроде бы не сложно, если фотка только со звездами, например:
Детектирование аномалий — интересная задача машинного обучения. Не существует какого-то определенного способа ее решения, так как каждый набор данных имеет свои особенности. Но в то же время есть несколько подходов, которые помогают добиться успеха. Я хочу рассказать про один из таких подходов — автоенкодеры.
Недавно мне на глаза попался датасет на Kaggle с данными о 45 тысячах фильмов с Full MovieLens Dataset. Данные содержали не только информацию об актерах, съемочной команде, сюжете и т.п., но и оценки, выставленные фильмам пользователями ресурса (26 миллионов оценок от 270 тыс.пользователей).
Стандартная задача для таких данных — это рекомендательная система. Но мне в голову почему-то пришло прогнозирование рейтинга фильма на основе информации, доступной до его выхода. Я не знаток кинематографа, и поэтому обычно ориентируюсь на рецензии, выбирая что посмотреть из новинок. Но ведь рецензенты тоже несколько biased — они-то смотрят гораздо больше разных фильмов, чем рядовой зритель. Поэтому спрогнозировать, как оценит фильм обычная публика, показалось занятным. Читать полностью »
Можно ли по цитате определить, кто из политиков ее автор? Украинская НКО Vox Ukraine делает проект VoxCheck, в рамках которого проверяет высказывания наиболее рейтинговых политиков. Недавно они выложили всю базу проверенных цитат. Я как раз слушаю курсы по NLP и решила проверить, насколько точно по тексту цитаты можно определить ее автора.
Disclaimer. Эта статья написана из интереса к теме и желания опробовать изученный материал на практике, без претензий на максимально точный и детальный анализ.
Читать полностью »

В данной статье мы изучим несколько аспектов SVM:
Хочу поделиться опытом решения задачи по машинному обучению и анализу данных от Kaggle. Данная статья позиционируется как руководство для начинающих пользователей на примере не совсем простой задачи.
Выборка данных
Выборка данных содержит порядка 8,5 млн строк и 29 столбцов.Вот некоторые из параметров:

Задача
Хочу поделиться опытом решения задачи по машинному обучению и анализу данных от Kaggle. Данная статья позиционируется как руководство для начинающих пользователей на примере не совсем простой задачи.Читать полностью »
Углубимся ещё немного в малохоженные дебри Data Science. Сегодня в очереди на препарацию алгоритм кластеризации DBSCAN. Прошу под кат людей, которые сталкивались или собираются столкнуться с кластеризацией данных, в которых встречаются сгустки произвольной формы — сегодня ваш арсенал пополнится отличным инструментом.