Мы частенько шутим с коллегами , что любые действия можно поделить на «обезьяньи» и «smart»Читать полностью »
Мы частенько шутим с коллегами , что любые действия можно поделить на «обезьяньи» и «smart»Читать полностью »
Предисловие
Взлом музыки для демократизации производного контента
Отказ от ответственности: вся интеллектуальная собственность, проекты и методы, описанные в этой статье, раскрыты в патентах US10014002B2 и US9842609B2.
Вот бы вернуться в 1965 год, постучать в парадную дверь студии «Эбби-Роуд» с пропуском, зайти внутрь — и услышать настоящие голоса Леннона и Маккартни… Что ж, давайте попробуем. Входные данные: MP3 среднего качества песни «Битлз» We Can Work it Out. Верхняя дорожка — входной микс, нижняя дорожка — изолированный вокал, который выделила наша нейросеть.
И снова привет!
В декабре у нас стартует обучение очередной группы «Data scientist», поэтому открытых уроков и прочих активностей становится всё больше. Например, буквально на днях прошёл вебинар под длинным названием «Feature Engineering на примере классического датасета Титаника». Его провёл Александр Сизов — опытный разработчик, кандидат технических наук, эксперт по Machine/Deep learning и участник различных коммерческих международных проектов, связанных с искусственным интеллектом и анализом данных.
Открытый урок занял около полутора часов. В ходе вебинара преподаватель рассказал про подбор признаков, преобразование исходных данных (кодирование, масштабирование), настройку параметров, обучение модели и много чего ещё. В процессе проведения урока участникам показывалась тетрадь Jupyter Notebook. Для работы использовались открытые данные с платформы Kaggle (классический датасет про «Титаник», с которого многие начинают знакомство с Data Science). Ниже предлагаем видео и транскрипт прошедшего мероприятия, а тут можно забрать презентацию и коды в юпитеровском ноутбуке.
Носимые устройства сейчас в моде, но используются в основном для фитнеса и спорта. Как найти им другое применение? Что они могут рассказать о нашем здоровье и продолжительности жизни? А главное — как оценивать поступающие с них данные? Руководитель направления mHealth R&D в компании Gero Тимофей Пырков прочитал отличную лекцию, посвящённую локомоторной активности человека.
Под катом — расшифровка и большинство слайдов.
Сообщество Open Data Science приветствует участников курса!
В рамках курса мы уже познакомились с несколькими ключевыми алгоритмами машинного обучения. Однако перед тем как переходить к более навороченным алгоритмам и подходам, хочется сделать шаг в сторону и поговорить о подготовке данных для обучения модели. Известный принцип garbage in – garbage out на 100% применим к любой задаче машинного обучения; любой опытный аналитик может вспомнить примеры из практики, когда простая модель, обученная на качественно подготовленных данных, показала себя лучше хитроумного ансамбля, построенного на недостаточно чистых данных.
