Рубрика «keras»

Прогресс в области нейросетей вообще и распознавания образов в частности, привел к тому, что может показаться, будто создание нейросетевого приложения для работы с изображениями — это рутинная задача. В некотором смысле, так и есть — если вам пришла в голову идея, связанныя с распознаватием образов, не сомневайтесь, что кто-то уже что-то подобное написал. Все, что от вас требуется, это найти в Гугле соответствующий кусок кода и «скомпилировать» его у автора.

Однако, все еще есть многочисленные детали, делающие задачу не столько неразрешимой, сколько… нудной, я бы сказал. Отнимающей слишком много времени, особенно если вы — новичок, которому нужно руководство, step-by-step, проект, выполненный прямо на ваших глазах, и выполненный от начала и до конца. Без обычных в таких случаях «пропустим эту очевидную часть» отговорок.

В этой статье мы рассмотрим задачу создания определителя пород собак (Dog Breed Identifier): создадим и обучим нейросеть, а затем портируем ее на Java для Android и опубликуем на Google Play.

Если вы хотите посмотреть на готовый результат, вот он: NeuroDog App на Google Play.

Веб сайт с моей робототехникой (в процессе): robotics.snowcron.com.
Веб сайт с самой программой, включая руководство: NeuroDog User Guide.

А вот скриншот программы:

image

Читать полностью »

Quick Draw Doodle Recognition: как подружить R, C++ и нейросетки - 1

Привет!

Осенью прошлого года на Kaggle проходил конкурс по классификации нарисованных от руки картинок Quick Draw Doodle Recognition, в котором среди прочих поучаствовала команда R-щиков в составе Артема Клевцова, Филиппа Управителева и Андрея Огурцова. Подробно описывать соревнование не будем, это уже сделано в недавней публикации.

С фармом медалек в этот раз не сложилось, но было получено много ценного опыта, поэтому о ряде наиболее интересных и полезных на Кагле и в повседневной работе вещей хотелось бы рассказать сообществу. Среди рассмотренных тем: нелегкая жизнь без OpenCV, парсинг JSON-ов (на этих примерах рассматривается интеграции кода на С++ в скрипты или пакеты на R посредством Rcpp), параметризация скриптов и докеризация итогового решения. Весь код из сообщения в пригодном для запуска виде доступен в репозитории.

Содержание:

  1. Эффективная загрузка данных из CSV в базу MonetDB
  2. Подготовка батчей
  3. Итераторы для выгрузки батчей из БД
  4. Выбор архитектуры модели
  5. Параметризация скриптов
  6. Докеризация скриптов
  7. Использование нескольких GPU в облаке Google Cloud
  8. Вместо заключения

Читать полностью »

testУважаемые коллеги!

Приглашаем принять участие в онлайн-митапе серии DEV Labs, который пройдёт 20 марта и будет посвящён языку Python. Расскажем о применении Python в сфере проектирования систем «умного дома» и рассмотрим примеры решения задач по распознаванию человеческих действий в видео.

Подробнее о докладах:

test«Работа с GPIO Raspberry PI на Python». Докладчик — Павел Цытович.

Raspberry Pi может являться центральным узлом систем типа «умный дом». В умном доме мы хотим взаимодействовать с различными устройствами. Использование GPIO позволяет подключать к Raspberri PI много разных устройств. В этом докладе мы рассмотрим обзор библиотек языка Python для работы с GPIO, а также простейший пример использования GPIO на практике.

test
«Python в области машинного обучения и компьютерного зрения». Докладчик — Павел Жданов.

Рассмотрим использование Python в области машинного обучения и компьютерного зрения, познакомимся с Keras и OpenCV на примере задачи распознавания человеческих действий с видео клипов.
Читать полностью »

Nomeroff Net numberplate detection OCR example

Продолжаем рассказ о том как распознавать номерные знаки для тех кто умеет писать приложение «hello world» на python-е! В этой части научимся тренировать модели, которые ищут регион заданного объекта, а также узнаем как написать простенькую RNN-сеть, которая будет справляться с чтением номера лучше чем некоторые коммерческие аналоги.
В этой части я расскажу как тренировать Nomeroff Net под Ваши данные, как получить высокое качество распознавания, как настроить поддержку GPU и ускорить все на порядок…
Читать полностью »

Насколько сложна тема машинного обучения? Если Вы неплохо математически подкованы, но объем знаний о машинном обучении стремится к нулю, как далеко Вы сможете зайти в серьезном конкурсе на платформе Kaggle?

Kaggle: не можем ходить — будем бегать - 1
Читать полностью »

Взлом музыки для демократизации производного контента

Отказ от ответственности: вся интеллектуальная собственность, проекты и методы, описанные в этой статье, раскрыты в патентах US10014002B2 и US9842609B2.

Вот бы вернуться в 1965 год, постучать в парадную дверь студии «Эбби-Роуд» с пропуском, зайти внутрь — и услышать настоящие голоса Леннона и Маккартни… Что ж, давайте попробуем. Входные данные: MP3 среднего качества песни «Битлз» We Can Work it Out. Верхняя дорожка — входной микс, нижняя дорожка — изолированный вокал, который выделила наша нейросеть.

Читать полностью »

Здравствуйте, я школьник 11 классов, интересуюсь программированием, около-IT тематикой.

Пишу данный пост с целью поделиться своим проектом, занявшим 10 часов моей жизни на выходных и выполненным с целью понять возможности современных методов анализа данных. Публикация может рассматриваться как пример удачной реализации для людей, несведущих в этой области знания, а так же как просьба указать мои ошибки для людей, соответственно, сведущих.
Читать полностью »

Привет!

В этой небольшой заметке расскажу о двух подводных камнях, с которыми как легко столкнуться, так и легко о них разбиться.

Речь пойдет о создании тривиальной нейронной сети на Keras, с помощью которой будем предсказывать среднее арифметическое двух чисел.

Казалось бы, что может быть проще. И действительно, ничего сложного, но есть нюансы.

Кому тема интересна, добро пожаловать под кат, здесь не будет долгих занудных описаний, просто короткий код и комментарии к нему.
Читать полностью »

Не так давно передо мной встала производственная задача – запустить обученную модель нейронной сети Kesas на нативном C++ коде. Как ни странно, решение оказалось вообще не тривиальным. В результате чего появилась собственная библиотека, дающая такую возможность. О том, как же это – нейросети на чистых крестах и будет сегодняшняя небольшая статья.

Тем, кому не терпится – вот тут репозитарий на github, с подробным описанием использования. Ну а всех остальных прошу под кат… Читать полностью »

Пример распознавания номерных знаков
Все начиналось банально — моя компания уже год платила ежемесячно плату за сервис, который умел находить регион с номерными знаками на фото. Эта функция применяется для автоматической зарисовки номера у некоторых клиентов.

И в один прекрасный день МВД Украины открыло доступ к реестру транспортных средств. Теперь по номерному знаку стало возможным проверять некоторую информацию про автомобиль (марку, модель, год выпуска, цвет и т.д. )! Скучная рутина линейного программирования померкла перед новой свехзадачей — считывать номера по всей базе фото и валидировать эти данные с теми, что указывал пользователь. Сами знаете как это бывает «глаза загорелись» — вызов принят, все остальные задачи на время стали скучны и монотонны… Мы принялись за работу и получили неплохие результаты, чем, собственно и решили поделиться с сообществом.

Для справки: на сайт AUTO.RIA.com, в день добавляется около 100 000 фото.

Датасаентисты давно уже знают и умеют решать подобные задачи, поэтому мы с dimabendera написали эту статью именно для программистов. Если вы не боитесь словосочетания «сверточные сети» и умеете писать «Hello World» на питоне — милости просим под кат…
Читать полностью »