Рубрика «tensorrt»

Мир машинного обучения продолжает стремительно развиваться. Всего за год технология может стать мейнстримом, и разительно измениться, придя в повседневность.

За прошедший год-полтора, одной из таких технологий, стали фреймворки выполнения моделей машинного обучения. Не то, что их не было. Но, за этот год, те которые были — стали сильно проще, удобнее, мощнее.

Как запихать нейронку в кофеварку - 1

В статье я попробую осветить всё что повылезало за последнее время. Чтобы вы, решив использовать нейронную сеть в очередном калькуляторе, знали куда смотреть.
Читать полностью »

Хочу рассказать вам о том, как я делал и сделал самоуправляему машинку :)

Я мог бы рассказать сразу, как делать, сухо прикрепив схемы и bash команды, но так будет скучно. Предлагаю вам интересную (я надеюсь) историю о том, как лично я прошел этот путь, и куда пришел.

Те места, где было что фоткать, с фотками. Там, где про софт — скорее всего без фото.

Это будет действительно история в формате повествования, как я рассказывал бы вам за чашкой кофе. Это не про bash команды, python скрипты, и вот это вот всё.

Начнём с фотки и видео того, что получилось, и дальше вся история под катом.

Self-driving ГАЗ66 Monster Truck 1-16 - 1
Читать полностью »

image
Больно только в первый раз!

Всем привет! Дорогие друзья, в этой статье я хочу поделиться своим опытом использования TensorRT, RetinaNet на базе репозитория github.com/aidonchuk/retinanet-examples (это форк официальной репы от nvidia, который позволит начать использовать в продакшен оптимизированные модели в кратчайшие сроки). Пролистывая сообщения в каналах сообщества ods.ai, я сталкиваюсь с вопросами по использованию TensorRT, и в основном вопросы повторяются, поэтому я решил написать как можно более полное руководство по использованию быстрого инференса на основе TensorRT, RetinaNet, Unet и docker.
Читать полностью »

image

Перед тобой снова задача детектирования объектов. Приоритет — скорость работы при приемлемой точности. Берешь архитектуру YOLOv3 и дообучаешь. Точность(mAp75) больше 0.95. Но скорость прогона всё еще низкая. Черт.

Сегодня обойдём стороной квантизацию. А под катом рассмотрим Model Pruning — обрезание избыточных частей сети для ускорения Inference без потери точности. Наглядно — откуда, сколько и как можно вырезать. Разберем, как сделать это вручную и где можно автоматизировать. В конце — репозиторий на keras.

Читать полностью »

Нейронные сеточки захватывают мир. Они считают посетителей, контролируют качество, ведут статистику и оценивают безопасность. Куча стартапов, использование в промышленности.
Замечательные фреймворки. Что PyTorch, что второй TensorFlow. Всё становиться удобнее и удобнее, проще и проще…
Но есть одна тёмная сторона. Про неё стараются молчать. Там нет ничего радостного, только тьма и отчаяние. Каждый раз когда видишь позитивную статью — грустно вздыхаешь, так как понимаешь что просто человек что-то не понял. Или скрыл.
Давайте поговорим про продакшн на embeded-устройствах.
Ультимативное сравнение embedded платформ для AI - 1
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js