Рубрика «object detection»

image

Всем привет! Пока киберпанк еще не настолько вошел в нашу жизнь, и нейроинтерфейсы далеки от идеала, первым этапом на пути к будущему манипуляторов могут стать LiDAR. Поэтому, чтобы не скучать на праздниках, я решил немного пофантазировать на тему средств управления компьютером и, предположительно, любым устройством, вплоть до экскаватора, космического корабля, дрона или кухонной плиты.
Читать полностью »

Scaled YOLO v4 является самой точной нейронной сетью (55.8% AP) на датасете Microsoft COCO среди всех опубликованных нейронных сетей на данный момент. А также является лучшей с точки зрения соотношения скорости к точности во всем диапазоне точности и скорости от 15 FPS до 1774 FPS. На данный момент это Top1 нейронная сеть для обнаружения объектов.

Scaled YOLO v4 обгоняет по точности нейронные сети:

  • Google EfficientDet D7x / DetectoRS or SpineNet-190 (self-trained on extra-data)
  • Amazon Cascade-RCNN ResNest200
  • Microsoft RepPoints v2
  • Facebook RetinaNet SpineNet-190

Мы показываем, что подходы YOLO и Cross-Stage-Partial (CSP) Network являются лучшими с точки зрения, как абсолютной точности, так и соотношения точности к скорости.

График Точности (вертикальная ось) и Задержки (горизонтальная ось) на GPU Tesla V100 (Volta) при batch=1 без использования TensorRT:

Scaled YOLO v4 самая лучшая нейронная сеть для обнаружения объектов на датасете MS COCO - 1

Читать полностью »

«Breakout-YOLO»: знакомимся с шустрой object-detection моделью, играя в классический «Арканоид» - 1

Всем привет! Весенний семестр для некоторых студентов 3-го курса ФУПМ МФТИ ознаменовался сдачей проектов по курсу «Методы оптимизации». Каждый должен был выделить интересную для себя тему (или придумать свою) и воплотить её в жизнь в виде кода, научной статьи, численного эксперимента или даже бота в Telegram.

Жёстких ограничений на выбор темы не было, поэтому можно было дать разгуляться фантазии. You Only Live Once! — воскликнул я, и решил использовать эту возможность, чтобы привнести немного огня в бессмертную классику.Читать полностью »

Пролог

По сети сейчас гуляет видео — как автопилот Теслы видит дорогу.
У меня давно чесались руки транслировать видео, обогащенное детектором, да и в реальном времени.

Видео с облачным детектором объектов на Raspberry Pi - 1

Проблема в том, что транслировать видео я хочу с Raspberry, а производительность нейросетевого детектора на ней оставляет желать лучшего.
Читать полностью »

image
Больно только в первый раз!

Всем привет! Дорогие друзья, в этой статье я хочу поделиться своим опытом использования TensorRT, RetinaNet на базе репозитория github.com/aidonchuk/retinanet-examples (это форк официальной репы от nvidia, который позволит начать использовать в продакшен оптимизированные модели в кратчайшие сроки). Пролистывая сообщения в каналах сообщества ods.ai, я сталкиваюсь с вопросами по использованию TensorRT, и в основном вопросы повторяются, поэтому я решил написать как можно более полное руководство по использованию быстрого инференса на основе TensorRT, RetinaNet, Unet и docker.
Читать полностью »

Издевательски точный, быстрый и легковесный поиск баркодов через семантическую сегментацию - 1Поиск объектов на изображениях? Имея обучающую выборку и минимальный набор знаний о нейросетях, любой студент сегодня может получить решение определенной точности. Однако большинство нейросетей, использующихся для решения этой задачи, достаточно глубокие, а соответственно, требуют много данных для обучения, сравнительно медленно работают на этапе inference (особенно если на устройстве отсутствует GPU), много весят и достаточно энергозатратны. Все вышеперечисленное может быть весьма критично в определенных случаях, в первую очередь, для мобильных приложений.

Баркоды — объекты с достаточно простой структурой. В ходе исследований у нас получилось с помощью сравнительно оригинального подхода искать такие простые объекты весьма точно (мы побили state-of-the-art) и достаточно быстро (real-time на среднем CPU). Плюс наш детектор очень легкий, имеющий всего 30к весов. О результатах нашего исследования мы и расскажем в этой статье.Читать полностью »

Привет.

Вы знали, что платформы для размещения объявлений часто копируют контент у конкурентов, чтобы увеличить количество объявлений у себя? Они делают это так: обзванивают продавцов и предлагают им разместиться на своей платформе. А иногда и вовсе копируют объявления без разрешения пользователей. Авито — популярная площадка, и мы часто сталкиваемся с такой недобросовестной конкуренцией. О том, как мы боремся с этим явлением, читайте под катом.

Как мы боремся с копированием контента, или первая adversarial attack в проде - 1

Читать полностью »

Привет. В конце прошлого года мы стали автоматически скрывать номера автомобилей на фотографиях в карточках объявлений на Авито. О том, зачем мы это сделали, и какие есть способы решения таких задач, читайте в статье.

Hide my plate!
Читать полностью »

Привет, читатели. Сегодняшний пост будет о том, как не затеряться в дебрях многообразия вариантов использования TensorFlow для машинного обучения и достигнуть своей цели. Статья рассчитана на то, что читатель знает основы принципов работы машинного обучения, но пока еще не пробовал это делать своими руками. В итоге мы получим работающее демо на Андроиде, которое кое-что распознает с довольно высокой точностью. Но обо всем по порядку.

Как разобраться в Tensorflow и не умереть, а даже научить чему-то машину - 1

Читать полностью »

Скорее всего, вы слышали об авторе этой лекции. Владимир ternaus Игловиков занял второе место в британском Data Science Challenge, но организаторы конкурса не стали выплачивать ему денежный приз из-за его российского гражданства. Затем наши коллеги из Mail.Ru Group взяли выплату приза на себя, а Владимир, в свою очередь, попросил перечислить деньги в Российский Научный Фонд. История получила широкий охват в СМИ.

Спустя несколько недель Владимир выступил на одной из тренировок Яндекса по машинному обучению. Он рассказал о своём подходе к участию в конкурсах, о сути Data Science Challenge и о решении, которое позволило ему занять второе место.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js