Рубрика «Блог компании ABBYY»

Первую часть статьи об основах NLP можно прочитать здесь. А сегодня мы поговорим об одной из самых популярных задач NLP – извлечении именованных сущностей (Named-entity recognition, NER) – и разберем подробно архитектуры решений этой задачи.

image
Читать полностью »

Девушка в IT, или 5 советов для амбициозных - 1В этом посте я специально не буду говорить отдельно о «рецепте для женщин», т.к. считаю, что схема успеха одна и та же, независимо от пола. Об отличиях и специфике «женского пути» будет в конце. Если кто-то интересуется только этой частью, смело скрольте до последнего раздела.

В конце прошлого года меня пригласили выступить на мероприятии Worldwide Conversation on Women’s Higher Education and Equality in the Workplace на факультете компьютерных наук ВШЭ. Это беседа о том, как в современном мире женщина может построить успешную карьеру в области науки, образования или информационных технологий, с какими сложностями она при этом сталкивается и как может их преодолеть.

Я была спикером «со стороны IT» и рассказывала, как мне кажется, вполне очевидные и сами собой разумеющиеся вещи. Но, делясь впечатлениями о мероприятии с друзьями и коллегами, обнаружила, что тема очень многим интересна и относятся к ней очень по-разному. Именно после этого и родилась статья. В ней я расскажу о моем опыте развития карьеры в IT-компании и том, что считаю важным делать, а чего, наоборот, избегать, чтобы стать успешным в своем деле.
Читать полностью »

Вы просто не там искали: как находить сотрудников для проекта в техподдержке - 1 Привет! Меня зовут Егор Шатов, я старший инженер группы поддержки ABBYY и спикер курса Project Management in IT в Digital October. Сегодня я расскажу о том, каковы шансы пополнить команду продукта специалистом из техподдержки и как правильно организовать перевод на новую должность.

Вакансии в техподдержке охотно занимают молодые специалисты, которым нужно набраться опыта, и профессионалы из других сфер, которые стремятся глубже погрузиться в сферу IT. Многие хотят делать карьеру в компании и готовы учиться, много и хорошо работать — возможно, в продуктовой команде.
Читать полностью »

MWC: инструкция по применению - 1

2019 год и новый Mobile World Congress. Все стремятся показать свои новинки, благодаря которым формируются главные IT-тренды на год. Мы тоже участвовали в MWC 2019 и в этом посте поделимся нашими впечатлениями от выставки, расскажем о наших новых разработках, сделаем обзор основных трендов MWC и дадим несколько советов, как подготовиться к участию в таком крупном событии.
Читать полностью »

Мы несколько раз писали о том, как наши технологии помогают различным организациям и даже целым государствам обрабатывать информацию из любых типов документов и вводить данные в учетные системы. Сегодня расскажем, как внедряли ABBYY FlexiCapture в Московской объединенной энергетической компании (МОЭК) – крупнейшем поставщике тепла и горячей воды в Москве.

Представьте себя на месте обычного бухгалтера. Понимаем, это непросто, но все-таки попробуйте. Каждый день вам приходит огромное количество бумажных счетов, накладных, справок и так далее. А особенно много – в дни перед сдачей отчетности. Все реквизиты и суммы нужно быстро и внимательно проверить, перепечатать и внести в учетную систему, вручную провести транзакции и отправить документы в архив, чтобы потом вовремя предоставить для проверки внутренним аудиторам, налоговой службе, органам тарифного регулирования и другим. Сложно? Но это многолетняя деловая практика, которая существует во многих компаниях. Вместе с МОЭК мы упростили эту кропотливую работу и сделали ее удобнее. Если вам интересно, как это было, добро пожаловать под кат.

Как мы помогали трансформировать работу бухгалтерии в МОЭК - 1

На фото – московская ТЭЦ-21, крупнейший в Европе производитель тепловой энергии. Тепло, выработанное на этой станции, МОЭК поставляет 3 миллионам жителей севера Москвы. Источник фото.
Читать полностью »

Формула для корейского, или распознаем хангыль быстро, легко и без ошибок - 1На сегодняшний день сделать распознавание корейских символов может любой студент, прослушавший курс по нейросетям. Дайте ему выборку и компьютер с видеокартой, и через некоторое время он принесёт вам сеть, которая будет распознавать корейские символы почти без ошибок.

Но такое решение будет обладать рядом недостатков:

Во-первых, большое количество необходимых вычислений, что влияет на время работы или требуемую энергию (что очень актуально для мобильных устройств). Действительно, если мы хотим распознавать хотя бы 3000 символов, то это будет размер последнего слоя сети. А если вход этого слоя равен хотя бы 512-ти, то получаем 512 * 3000 умножений. Многовато.

Во-вторых, размер. Тот же самый последний слой из предыдущего примера будет весить 512 * 3001 * 4 байт, то есть около 6-ти мегабайт. Это только один слой, вся сеть будет весить десятки мегабайт. Понятно, для настольного компьютера это проблема небольшая, но на смартфоне не все будут готовы хранить столько данных для распознавания одного языка.

В-третьих, такая сеть будет давать непредсказуемый результат на изображениях, которые не являются корейскими символами, но тем не менее используются в корейских текстах. В лабораторных условиях это не трудно, но для практического применения технологии этот вопрос придётся как-то решать.

И в-четвёртых, проблема в количестве символов: 3000, скорее всего, хватит чтобы, например, отличить в меню ресторана стейк от жареного морского огурца, но порой встречаются и более сложные тексты. Обучить сеть на большее количество символов будет сложно: она будет не только более медленной, но и возникнет проблема со сбором обучающей выборки, так как частота символов падает приблизительно экспоненциально. Конечно, можно доставать изображения из шрифтов и аугментировать их, но для обучения хорошей сети этого недостаточно.

И сегодня я расскажу, как нам удалось решить эти проблемы.
Читать полностью »

Как научить машину понимать инвойсы и извлекать из них данные - 1Привет! Меня зовут Станислав Семенов, я работаю над технологиями извлечения данных из документов в R&D ABBYY. В этой статье я расскажу об основных подходах к обработке полуструктурированных документов (инвойсы, кассовые чеки и т.д.), которые мы использовали совсем недавно и которые используем прямо сейчас. А еще мы поговорим о том, насколько для решения этой задачи применимы методы машинного обучения.
Читать полностью »

image

Здравствуй! В далёком 2005 году в ABBYY появился первый мобильный SDK. А в 2007 в компании образовался отдельный департамент ABBYY Mobile, и начали рождаться технологии, которые стали основой наших приложений — ABBYY Business Card Reader, ABBYY FineScanner и ABBYY TextGrabber. В 2009 наш первопроходец Business Card Reader вышел на мобильные (кнопочные!) телефоны Nokia под управлением Symbian. И совсем скоро, 19 марта 2019 года, мы будем праздновать первое десятилетие.

В этом посте мы расскажем и покажем, как устроена изнутри жизнь и работа ABBYY Mobile, какие технологии мы разрабатываем, куда ездим в командировки и многое другое.
Читать полностью »

В прошлых статьях уже писали о том, как у нас устроены технологии распознавания текста:

Примерно так же до 2018 года было устроено распознавание японских и китайских символов: в первую очередь с использованием растровых и признаковых классификаторов. Но с распознаванием иероглифов есть свои трудности:

1). Огромное количество классов, которое нужно различать.
2). Более сложное устройство символа в целом.

image

Сказать однозначно, сколько символов насчитывает китайская письменность, так же сложно, как точно посчитать, сколько слов в русском языке. Но наиболее часто в китайской письменности используются ~10 000 символов. Ими мы и ограничили число классов, используемых при распознавании.

Обе описанные выше проблемы также приводят и к тому, что для достижения высокого качества приходится использовать большое количество признаков и сами эти признаки вычисляются на изображениях символов дольше.

Чтобы эти проблемы не приводили к сильнейшим замедлениям во всей системе распознавания, приходилось использовать множество эвристик, в первую очередь направленных на то, чтобы быстро отсечь значительное количество иероглифов, на которые эта картинка точно не похожа. Это всё равно не до конца помогало, а нам хотелось вывести наши технологии на качественно новый уровень.

Мы стали исследовать применимость свёрточных нейронных сетей, чтобы поднять как качество, так и скорость распознавания иероглифов. Хотелось заменить весь блок распознавания отдельного символа для этих языков с помощью нейронных сетей. В этой статье мы расскажем, как нам в итоге это удалось.
Читать полностью »

Привет! Меня зовут Иван Смуров, и я возглавляю группу исследований в области NLP в компании ABBYY. О том, чем занимается наша группа, можно почитать здесь. Недавно я читал лекцию про Natural Language Processing (NLP) в Школе глубокого обучения – это кружок при Физтех-школе прикладной математики и информатики МФТИ для старшеклассников, интересующихся программированием и математикой. Возможно, тезисы моей лекции кому-то пригодятся, поэтому поделюсь ими с Хабром.

Поскольку за один раз все объять не получится, разделим статью на две части. Сегодня я расскажу о том, как нейросети (или глубокое обучение) используются в NLP. Во второй части статьи мы сконцентрируемся на одной из самых распространенных задач NLP — задаче извлечения именованных сущностей (Named-entity recognition, NER) и разберем подробно архитектуры ее решений.

NLP. Основы. Техники. Саморазвитие. Часть 1 - 1

Читать полностью »