Больница Массачусетса и DeepMind независимо друг от друга приоткрыли «черный ящик» ИИ в медицине

в 12:25, , рубрики: будущее здесь, Здоровье гика, искусственные нейронные сети, искусственный интеллект, медицина, Новость

Применение искусственного интеллекта в постановке диагнозов уже не за горами. И даже ближе, чем кажется. Ведь сразу двум исследовательским командам по обе стороны Атлантики удалось-таки решить проблему «черного ящика» ИИ в медицине.

Проблема «черного ящика» заключается в том, что система ИИ при выдаче результатов, а в медицине это постановка диагноза и рекомендации по дальнейшей терапии, не предоставляет обоснований, которые, в частности, требует Управление по контролю за продуктами и лекарствами (FDA) в США.

В декабре минувшего года Массачусетская многопрофильная больница (Massachusetts General Hospital) сообщила о том, что смогла научить ИИ «объяснять» поставку диагноза при внутричерепном кровотечении. Пятью месяцами ранее британская компания DeepMind, приобретенная Google в 2014 году, заявила об аналогичном прорыве в диагностике глазных заболеваний.

Главной задачей обеих команд было научить систему оценивать снимки сканеров и принимать решения так, как это делает врач-специалист.

Атлас признаков

Врачи отделения радиологии Массачусетской больницы совместно со студентами магистратуры Гарвардского отдела инженерии и прикладных наук разработали модель ИИ, которая способна классифицировать внутричерепное кровоизлияние, сообщается в пресс-релизе на сайте больницы. Чтобы натренировать систему, команда использовала 904 снимка КТ (компьютерной томографии), каждый из которых содержал около 40-ка отдельно взятых снимков. Команда из пяти нейрорадиологов промаркировала каждый из снимков на наличие одного из пяти подтипов кровоизлияния, исходя из местоположения, а также отсутствия кровоизлияния как такового. Для повышения точности этой системы глубокого обучения команда встроила действия, имитирующие процесс анализа снимков радиологом, который включает в себя корректировку параметров, таких как контраст и яркость для проявления скрытых различий, и прокручивание сопредельных срезов КТ для определения того, действительно ли что-то, появившееся на одном изображении, отражает реальную проблему или это ни о чем не говорящее искажение.

Сразу после создания модели системы исследователи протестировали ее двумя отдельными наборами сканов КТ: 100 сканов с внутричерепным кровоизлиянием и 100 без него, взятые до разработки системы, и 79 сканов с кровоизлиянием и 117 без такового, взятые после того, как модель была создана. В случае с первый набором данных, взятых до, модель была точна в определении и классификации внутричерепного кровотечения на уровне анализа, сделанного радиологом. При анализе второго набора она доказала, что может быть даже лучше, чем человек, не эксперт в этой области.

Для решения проблемы «черного ящика» команда сделала так, чтобы система проверяла и сохраняла те изображения из тренировочного набора данных, которые наиболее ясно представляют характерные симптомы каждого из пяти подтипов кровоизлияний. Используя этот атлас отличительных признаков, система может представлять группу изображений, схожих с той, которая используется при анализе сканов КТ с целью объяснить, на каких основания приняты решения.

Больница Массачусетса и DeepMind независимо друг от друга приоткрыли «черный ящик» ИИ в медицине - 1

Эта иллюстрация показывает способность системы объяснить постановку таких диагнозов, как субарахноидальное (слева сверху) и внутрижелудочковое (слева снизу) кровоизлияния, демонстрируя изображения с аналогичными признаками (справа) из атласа изображений, который использовался для тренировки системы.

«Быстрое распознавание внутричерепного кровоизлияния, за которым следует немедленное надлежащее лечение пациентов с симптомами острого инсульта, может минимизировать тяжелые последствия для здоровья и предотвратить смерть, — говорит соавтор исследования, радиолог Майкл Лев. — Во многих лабораториях нет специально обученных нейрорадиологов, особенно по ночам или в выходные дни, что требует неспециалистов принимать решения о том, вызваны ли симптомы пациента кровоизлиянием или нет. Доступность надежного «виртуального второго мнения», натренированного нейрорадиологами, могла бы улучшить результаты работы неспециалистов и помочь удостовериться, что пациенты получают правильное лечение».

Карта сегментации тканей

В августе 2018 года британская компания DeepMind опубликовала на ресурсе Nature Medicine исследование, в котором заявила, что решила проблему «черного ящика», разработав модель ИИ, способную действовать на профессиональном врачебном уровне, что однако не исключает людей из лечебного процесса, а, наоборот, помогает докторам быть эффективнее, как и в вышеописанном случае.

Согласно опубликованному исследованию, команда DeepMind работала в сфере глазных заболеваний совместно с центром по борьбе с глазными заболеваниями Moorfields Eye Hospital и разработала модель для диагностики по 3D-снимкам оптической когерентной томографии (ОКТ). Приоткрыть «черный ящик» удалось за счет создания двух отдельных нейронных сетей, работающих вместе. Первая, сегментирующая, используя трехмерную свёрточную архитектуру (U-Net), преображает необработанные ОКТ-сканы в карту сегментации ткани глаза. Для тренировки было использовано 877 клинических ОКТ-сканов, на каждом их которых 128 срезов, только три репрезентативные были сегментированы вручную. Сегментирующая сеть находит различные симптомы (кровоизлияния, очаговые поражения и др.) и создает карту. Как утверждает глава Applied AI Мустафа Сулейман в блоге компании, это помогает окулистам получить доступ к тому, как система «думает».

Вторая нейронная сеть, классифицирующая, анализирует предложенную карту и предоставляет лечащему персоналу диагнозы и рекомендации по лечению. Принципиально важным разработчики считают то, что сеть показывает рекомендации как процентные соотношения, позволяя врачам оценить «уверенность» системы в ее анализе. «Данная функциональная возможность является критически важной, так как окулисты играют ключевую роль в принятии решений о лечении, которое получат пациенты», — заявляет Мустава Сулейман. По его словам, ключевой особенностью системы, которая делает ее полезной на практике, является предоставление возможности для врачей скрупулезно изучить рекомендации ИИ. Система призвана помочь предотвратить полную потерю зрения за счет ускорения диагностики при таких заболеваниях, как диабетическая ретинопатия, возрастная дистрофия желтого пятна и нескольких десятков других болезней.

Больница Массачусетса и DeepMind независимо друг от друга приоткрыли «черный ящик» ИИ в медицине - 2

Описание иллюстрации. Получение расчетов с помощью комплекса сегментирующей и классифицирующей сетей. Иллюстрация показывает, как комплекс из 5-ти образцов сегментирующей сети и 5-ти образцов классифицирующей сети используются вместе при создании 25 прогнозов для одного скана. Каждый образец сегментирующей сети вначале предоставляет сегментированную карту предположений, основываясь на исследуемом ОКТ. Для каждого из пяти предположений образцы классифицирующей сети предоставляют вероятность по каждому маркеру. Здесь детально представлен маркер расположения атрофии.

Обе исследовательские команды выражают надежду на то, что разработанные ими системы не заменят врачей, а помогут им быть эффективнее в принятии решений, а значит, позволят помочь большему количеству пациентов в сжатые сроки. Следующий шаг — использование разработок непосредственно в больничных сканерах.

Автор: Алёна Моричева

Источник

* - обязательные к заполнению поля