Идеи философов о человеческом разуме привели к вере в то, что рациональное можно описать, пользуясь алгебраическими или логическими механизмами. Позже, с появлением электронных приборов, компьютеров и закона Мура, человечество попало в состояние постоянного ожидания того, что вот ещё немного — и появится машина, разум которой сравним с человеческим. Некоторые объявляли разумные машины спасителями человечества, а некоторые видели в этих машинах источник великого бедствия, так как полагали, что появление на Земле второй разумной сущности приведёт к уничтожению первой, то есть — людей.
Свет компьютеризированных систем искусственного интеллекта ярко вспыхивал в истории человечества уже несколько раз. Это было в 1950-х, в 1980-х и в 2010-х годах. К сожалению, за обоими предыдущими ИИ-бумами следовала «ИИ-зима». Искусственный интеллект не оправдывал возложенных на него ожиданий и выходил из моды. В том, что наступали эти «зимы», часто винили недостаток вычислительной мощности, неправильное понимание устройства человеческого
Некоторые исследователи полагают, что уровня общего умственного развития, соответствующего человеческому, можно достичь, просто добавляя всё больше и больше слоёв к упрощённым моделям головного
Но, в то же время, некоторые исследователи пытаются построить что-то, больше похожее на человеческий
Что такое нейроморфные вычисления?
«Нейроморфный» — это модный термин, который используется в применении к любым программам или устройствам, которые пытаются сымитировать деятельность

То же самое справедливо и для неокортекса, который сильно отличается в плане структуры, например, от заднего
Хотя рекуррентные нейронные сети (RNN, Recurrent Neural Network) относятся к полносвязным сетям, настоящий
Это привело нас к следующей общепринятой точке зрения: большинство нейронных сетей используют метод «интегрировать-и-сработать» с утечками. В RNN каждый узел испускает сигнал на каждом временном шаге работы сети, а настоящие нейроны испускают сигналы лишь тогда, когда мембранный потенциал нейрона достигает порогового значения (в реальности, правда, всё несколько сложнее). Есть искусственные нейронные сети, в которых учтена эта особенность, и которые более точно, с биологической точки зрения, имитируют работу
Как далеко продвинулись нейроморфные вычисления?
Несколько групп исследователей занимаются непосредственным моделированием нейронов. Например — это делается в рамках проекта OpenWorm: создана модель нервной системы круглого червя Caenorhabditis elegans, состоящая из 302 нейронов. Сейчас цель многих подобных проектов заключается в увеличении количества моделируемых нейронов, в повышении точности моделей, в оптимизации производительности программ. Например, в рамках проекта SpiNNaker создан суперкомпьютер начального уровня, позволяющий, в реальном времени, моделировать работу огромного количества нейронов. А именно, каждое процессорное ядро суперкомпьютера может обслуживать 1000 нейронов. В конце 2018 года проектом достигнут рубеж в 1 миллион ядер, а в 2019 году было объявлено о гранте на постройку подобной машины второго поколения (SpiNNcloud).
Многие компании, правительственные организации и университеты занимаются поиском необычных материалов и технологий для создания искусственных нейронов. В этой связи можно вспомнить о мемристорах, о спин-трансферных осцилляторах, о магнитных переключателях на основе джозефсоновских переходов. Хотя в моделях эти технологии и выглядят весьма многообещающими, огромная пропасть лежит между парой десятков смоделированных нейронов (или нейронов, размещённых на небольшой экспериментальной плате) и тысячами, если не миллионами нейронов, которые необходимы для достижения машиной реальных человеческих возможностей.
Другие исследователи (они работают, например, в IBM, Intel, BrainChip, в некоторых университетах) пытаются создать аппаратные реализации SNN, опираясь на существующие технологии, в частности — на технологию CMOS. Одна из таких платформ разработана Intel и представлена нейроморфным процессором Loihi, на основе которого можно создавать достаточно крупные системы.

Нейроморфная система, использующая 64 чипа Loihi для моделирования 8 миллионов нейронов
В первой половине 2020 года специалистами Intel была опубликована работа, в которой шла речь об использовании 768 чипов Loihi для реализации алгоритма поиска ближайшего соседа. Машина, имитирующая работу 100 миллионов нейронов, показала многообещающие результаты, продемонстрировав задержки, выглядящие лучше, чем в системах с большими, заранее рассчитанными индексами, и давая возможность добавлять в набор данных новые записи за время O(1).
Есть ещё крупномасштабный проект Human Brain Project, цель которого — лучше понять биологические нейронные сети. В нём имеется система, называемая BrainScaleS-1, при создании которой применяются цельнопластинные интегральные схемы, использующая для имитации нейронов аналоговые и смешанные сигналы. BrainScaleS-1 состоит из 12 пластин, каждая из которых моделирует 200000 нейронов. Подобная система следующего поколения, BrainScaleS-2, сейчас находится в разработке. Ожидается, что она будет готова в 2023 году.
Проект Blue Brain Project нацелен на создание как можно более точной копии
В результате можно сказать, что мы находимся в самом начале пути к созданию чего-то такого, что способно решать какие-то реальные задачи. А главным препятствием на этом пути является тот факт, что мы до сих пор не обладаем достаточными знаниями о том, как устроен наш
Нужны ли человечеству нейроморфные аппаратные устройства?
Что если человечеству не нужно нейроморфное аппаратное обеспечение? Например, алгоритм обратного обучения с подкреплением (Inverted Reinforcement Learning, IRL) позволяет машинам создавать функцию вознаграждения, не заостряя внимание исследователей на нейронных сетях. Просто наблюдая за чьими-либо действиями можно выяснить цель этих действий и воссоздать их через найденную функцию вознаграждения, которая обеспечивает воспроизведение наиболее эффективных действий эксперта (сущности, за которой осуществляется наблюдение). Проводятся дальнейшие исследования, касающиеся работы с экспертами, поведение которых не является оптимальным, с целью выяснения того, что они делали, и того, что они стремились сделать.
Многие продолжат продвигаться в сфере нейроморфных вычислений, применяя уже существующие сети, сравнительно простые, с использованием улучшенных функций вознаграждения. Например, в свежей статье о копировании частей
Каждый год мы видим всё новые и новые успехи техник глубокого обучения. Кажется, что выйдут ещё одна-две публикации, и эта сфера из интересной превратится в потрясающую воображение, а потом — в нечто такое, что и в голове не укладывается. Люди не умеют предсказывать будущее. Может — так всё и будет. А может — и нет. Возможно, если человечество продолжит двигаться в том же направлении — оно найдёт что-то новое, лучше поддающееся обобщению, которое можно будет реализовать средствами существующих нейронных сетей глубокого обучения.
Что делать тем, кому интересны нейроморфные вычисления?
Если вы хотите заняться нейроморфными вычислениями — учитывайте то, что многие проекты, упомянутые в этой статье, являются опенсорсными. Используемые в них наборы данных и модели можно найти на GitHub и на других подобных площадках. Среди таких проектов можно отметить, например, потрясающие NEURON и NEST. Многие энтузиасты нейроморфных вычислений рассказывают о своих экспериментах на OpenSourceBrain. А ещё, например, можно создать собственное нейроморфное «железо» — вроде NeuroBytes (если вас интересует именно тема «железа» — взгляните на этот обзор 2017 года).
В результате можно сказать, что, хотя нейроморфным вычислениям предстоит пройти ещё долгий путь, их будущее выглядит многообещающим.
Занимались ли вы нейроморфными вычислениями?
Автор:
ru_vds

