Рубрика «спектральный анализ» - 2

В завершающей статье цикла, посвящённого обучению Data Science с нуля, я делился планами совместить мое старое и новое хобби и разместить результат на Хабре. Поскольку прошлые статьи нашли живой отклик у читателей, я решил не откладывать это надолго.

Итак, на протяжении уже нескольких лет я в свободное время копошусь в вопросах, связанных с освещением и больше всего мне интересны спектры разных источников света, как «пращуры» производных от них характеристик. Но не так давно у меня совершенно случайно появилось еще одно хобби — это машинное обучение и анализ данных, в этом вопросе я абсолютный новичок, и чтобы было веселей делюсь периодически с вами своим обретенным опытом и набитыми «шишками»

Данная статья написана в стиле от новичка-новичкам, поэтому опытные читатели вряд ли, почерпнут для себя, что-то новое и если есть желание решить задачу классификации источников света по спектрам, то им есть смысл сразу взять данные из GitHub

А для тех, у кого нет за плечами громадного опыта, я предложу продолжить наше совместное обучение и в этот раз попробовать взяться за составление задачки машинного обучения, что называется «под себя».

Мы пройдем с вами путь от попытки понять где можно применить даже небольшие знания по ML которые можно получить из книг и курсов, до решения непосредственной самой задачи и мыслей о том «что теперь со всем этим делать?!»

Милости прошу всех под кат.

“Восстание МашинLearning” или совмещаем хобби по Data Science и анализу спектров лампочек - 1
Читать полностью »

Цель работы

В моей статье [1] рассмотрен метод гармонической линеаризации для исследования систем управления, содержащих нелинейные элементы.

Этот метод может быть использован в том случае, когда линейная часть системы является низкочастотным фильтром, т.е. отфильтровывает все возникающие на выходе нелинейного элемента гармонические составляющие, кроме первой гармоники [2]. Поэтому логическим продолжением моей первой статьи будет гармонический анализ рассмотренных нелинейных элементов. Кроме этого нужно рассмотреть аппаратную альтернативу методу гармонической линеаризации.Читать полностью »

image

Не так давно товарищ Makeman описывал, как с помощью спектрального анализа можно разложить некоторый звуковой сигнал на слагающие его ноты. Давайте немного абстрагируемся от звука и положим, что у нас есть некоторый оцифрованный сигнал, спектральный состав которого мы хотим определить, и достаточно точно.

Под катом краткий обзор метода выделения гармоник из произвольного сигнала с помощью цифрового гетеродинирования, и немного особой, Фурье-магии.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js