Рубрика «графен» - 4

image

Ученые из лаборатории нанооптики и плазмоники МФТИ создали на основе оксида графена сверхчувствительный биосенсор. Он сможет помочь в создании новых лекарств и вакцин. По словам учёных, это принципиально новый чип, который позволяет тестировать лекарственные препараты вне живого организма.

Принципиально новый чип на основе оксида графена позволяет тестировать лекарственные препараты вне живого организма. Технология может произвести революцию в создании новых лекарств и помочь врачам в ближайшем будущем победить неизлечимые заболевания.

Безмаркерные биосенсоры позволяют обнаруживать и исследовать химические свойства веществ при очень малой их концентрации. При этом отсутствует необходимость прикреплять к молекулам образцов метки-маркеры (обычно они флюоресцентные или радиоактивные), чтобы это вещество стало видимым для приборов.
Читать полностью »

image

Канадские учёные из Университета Британской Колумбии подтвердили, что добавление атомов лития изменяет электропроводящие свойства графена и превращает его в сверхпроводник. Опыт стал доказательством теоретических расчётов, проделанных три года назад.

В 2012 году исследователи составили компьютерную теоретическую модель, которая предсказала, что дополнение решётки графена слоем из атомов лития влияет на общее перераспределение электронов и приводят к появлению связей между электронами и фононами – квазичастицами, обусловленными колебательными движениями атомов кристалла.
Читать полностью »

Учёные сделали из графена катализатор, добавив наночастицы металлов - 1
Схема работы

Исследователи из университета Райса обнаружили, что графен с добавлением наночастиц металла приобретает свойства металлов, и даже может работать как заменитель платины в качестве катализатора химических процессов.

Платина – основной катализатор, использующийся в топливных ячейках, которые превращают кислород и водород в электричество, выделяя воду. Проблема с ней только одна – её дороговизна. Стоимость платины не намного меньше стоимости золота.

Исследователи ещё в прошлом году обнаружили, что облучая полиимидовую плёнку из инфракрасного углекислотного лазера, можно получить пористый графен на полимерной подложке. Полученный материал они назвали laser-induced graphene (графен, полученный при помощи лазера), или LIG.

Впоследствии они смогли, обогатив полимерную плёнку бором, значительно увеличить электрическую ёмкость получаемого графена.

Наконец, они придумали смешать полимер с металлическими солями, используя кобальт, железо или молибден. После обработки такой плёнки в течение получаса лазером при температуре в 750 градусов Цельсия, они получили LIG с равномерно распределёнными по его площади металлическими частицами размера около 10 нм. Результирующий материал содержит около 1% металла.
Читать полностью »

image
Слева – изображение материала под микроскопом; в середине – вид сверху; справа – вид сбоку

Китайские физики объявили, что впервые получили в своей лаборатории станен – двумерный материал, состоящий из атомов олова. Теоретически предсказанный ранее материал может обладать необычными свойствами, которые пока не нашли практического подтверждения – например, проводить ток по краю листа без сопротивления.

Возможность построения двумерной решётки из атомов олова была предсказана в 2011 году исследователями из Пекинского технологического института. А в 2013 году группой исследователей из Стэнфорда были получены выкладки, свидетельствующие о том, что проходящие по краю двумерного листа электроны не должны встречать сопротивления.
Читать полностью »

Учёные сделали из графена высокочувствительный молекулярный сенсор - 1

Несмотря на огромный потенциал такого уникального материала, как графен, практических приложений для него пока создано не очень много. Учёные из Федеральной политехнической школы Лозанны (Франция) совместно с исследователями Института фотонных исследований (Испания) сделали на основе графена сенсор. Этот сенсор обладает высокой чувствительностью, и его можно настроить на поиск определённого вида молекул.

В работе сенсора используется известный принцип инфракрасной атомно-абсорбционной спектроскопии. Этот метод позволяет изучать энергетические состояния квантовых систем путём исследования спектров поглощения электромагнитного излучения. Излучение непрерывного спектра пропускается через слой вещества, и часть его поглощается. При этом поглощаются волны с длинами, характерными для энергетических состояний исследуемого вещества.

Обычно для этого используется свет — но поскольку длина волны инфракрасного фотона составляет 6 микрометров, а молекулы имеют размеры в несколько нанометров, таким методом очень сложно обнаружить отдельные молекулы. Зато графен нужной геометрии способен фокусировать свет на нужном участке и улавливать соответствующие колебания молекулы, соединённой с ним.
Читать полностью »

image

Впервые учёные продемонстрировали рабочий источник света на базе графена, выполняющего роль нити накала. Мелкие частички графена, прикреплённые к металлическим электродам, светятся при пропускании через них электрического тока. Над проектом совместно работали исследователи из Колумбийского университета, Сеульского государственного университета и Корейского исследовательского института.

«Мы, по сути, создали тончайшую лампочку в мире,- говорит Джейм Хоун, соавтор работы. – Такой источник света можно интегрировать в чипы, и он проложит дорогу к изготовлению гибких и прозрачных дисплеев атомарной толщины, а также систем оптической связи».

Одной из ключевых задач при создании фотонных контуров для оптических компьютеров является создание микроскопических источников света. Лампу накаливания не удавалось встроить в микрочип, поскольку обычно для её свечения требуются высокие температуры, которые микросхемы не выдерживают.

Раскалённый графен достигал, по измерениям спектра света, температуры в 2500 градусов. При этом свет от структуры атомарной толщины был виден даже невооружённым глазом. Но уникальность графена в том, что с повышением температуры его теплопроводность уменьшается. Благодаря этому, он может раскаляться до свечения, не повреждая соседние микрокомпоненты.
Читать полностью »

image

Чего уж только не делают с графеном в наши дни! Его используют, как смазку для движущихся деталей, как фильтр для воды, как средство для получения водорода из воздуха. Ещё чуть-чуть и полетим к звёздам при помощи графеновых двигателей и построим лифт в космос. А вот исследователи из MIT придумали, как с помощью графенового покрытия улучшить конденсацию влаги на поверхности и ускорить тем самым её охлаждение.

В тепловых электростанциях обычно используется вода, которая нагревается при помощи выбранного источника энергии, превращается в пар, который вращает турбину, а затем конденсируется обратно в жидкость. При этом, чем эффективнее будет охлаждение и конденсация, тем больше будет общая эффективность станции.

Известно, что капельная конденсация, происходящая на гидрофобных поверхностях, эффективнее плёночной, которая происходит на смачиваемых поверхностях. Но покрытие, превращающее поверхность в гидрофобную (обычно полимерное), обычно либо химически нестабильно, либо получается слишком толстым, в результате чего весь выигрыш в эффективности пропадает.
Читать полностью »

На графене – к звёздам: материал из оксида графена двигается под воздействием света - 1
Графеновая губка

Новое неожиданное свойство графена было обнаружено китайскими учёными из Нанькайского университета. Экспериментируя с «графеновой губкой», полученной из оксида графена, они обнаружили, что луч лазера способе придавать губке ощутимое ускорение.

Графеновую губку учёные получили из смятых листов оксида графена. Они пытались резать этот материал лазерным резаком, и внезапно обнаружили, что под воздействием лазерного луча материал начинает двигаться. Будучи помещёнными в вакуумную камеру, небольшие кусочки графеновой губки получилось подбросить лазером вверх на высоту до 40 см. Их заставляли двигаться даже солнечные лучи, сфокусированные при помощи обычной линзы.

Пока не до конца понятно, каким образом лазер (и свет вообще) сдвигает с места что-то ощутимо крупнее отдельных атомов. Возможно, имеет место эффект солнечного паруса, когда фотоны придают ускорение парусу, передавая ему свой импульс. Совсем недавно был запущен LightSail – первый коммерческий спутник, работающий на таком принципе.

Вторая идея, возникшая у экспериментаторов состояла в том, что под воздействием лазера из графена выбиваются атомы углерода, которые придают губке реактивное движение – но эту идею учёные, по некоторому размышлению, отбросили.
Читать полностью »

image

Учёные из Аргоннской национальной лаборатории, исследуя условия, при которых возможно кардинально уменьшить трение между двумя твёрдыми поверхностями, придумали использовать для этого комбинацию графена и микроскопических алмазов. При этом алмазы служат аналогом шариков в подшипниках, уменьшая трение почти до нуля.

В нашем мире везде присутствует трение. Гладкие на первый взгляд поверхности содержат микроскопические неровности, которые, цепляясь друг за друга, противодействуют движению соприкасающихся предметов. В технике для уменьшения потерь энергии и предотвращения истирания движущихся частей используют смазку – иногда жидкую, иногда густую. В частности, хорошими смазывающими свойствами обладает смазка из графита.

В микромире на небольших идеально ровных поверхностях, соприкасающихся друг с другом, трение возникает из-за взаимного воздействия атомов. Например, у того же графита поверхность состоит из холмов и впадин, сильно напоминающих коробку для яиц. Если выровнять две соприкасающиеся поверхности, то они будут беспрепятственно скользить. Если же чуть повернуть одну из них, станут возникать зацепления и трение резко возрастёт.
Читать полностью »

image

Неизвестно, как учёным из итальянского Университета Тренто в голову пришла такая идея, но они решили спрыснуть пауков водой, содержащей углеродные нанотрубки и частицы графена. В результате пауки стали плести прочнейшую паутину с рекордными характеристиками.

Обычная паутина – удивительное творение природы. В относительных показателях она превосходит практически все материалы, которые пока научился изготавливать человек. Она так же прочна на растяжение, как сталь, имея при этом в шесть раз меньшую плотность. А некоторые виды паутины способны ещё и растягиваться в пять раз.

Исследователи подвергли эксперименту полтора десятка паучков, которые, ничего не подозревая, спокойно жили в итальянской сельской местности. У нас такие пауки известны, как пауки-сенокосцы, или пауки-долгоножки. После обработки водой, содержащей углеродные наноматериалы, пауки выдали паутину со следующими характеристиками:
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js