Машинное обучение проникает во все большее число научных и прикладных областей — от финансов до биомедицины. Даже такая сложная и специфичная сфера, как медицинская метагеномика, сегодня все активнее использует ML для диагностики заболеваний, поиска биомаркеров и анализа микробиоты. О том, какие задачи решает ML в метагеномике и с какими трудностями сталкиваются исследователи, рассказывает к. м. н. Анастасия Холодная — выпускница магистратуры «Прикладной анализ данных в медицинской сфере» и эксперт Центра «Пуск».
Рубрика «предобработка данных»
Готовим данные для анализа правильно
2017-11-14 в 12:47, admin, рубрики: data mining, анализ данных, машинное обучение, нейронные сети, предобработка данных
В задачах машинного обучения качество моделей очень сильно зависит от данных.
Но сами данные в реальных задачах редко бывают идеальными. Как правило, самих данных не много, количество доступных для анализа параметров ограничено, в данных шумы и пропуски. Но решать задачу как-то нужно.
Я хочу поделиться практическим опытом успешного решения задач машинного обучения. И дать простой набор шагов, позволяющих выжать из данных максимум.
Читать полностью »
Распознавание дорожных знаков с помощью CNN: Инструменты для препроцессинга изображений
2017-08-01 в 10:03, admin, рубрики: big data, data augmentation, data mining, Блог компании New Professions Lab, машинное обучение, обработка изображений, предобработка данных, распознавание изображенийПривет! Продолжаем серию материалов от выпускника нашей программы Deep Learning, Кирилла Данилюка, об использовании сверточных нейронных сетей для распознавания образов — CNN (Convolutional Neural Networks)
Введение
За последние несколько лет сфера компьютерного зрения (CV) переживает если не второе рождение, то огромный всплеск интереса к себе. Во многом такой рост популярности связан с эволюцией нейросетевых технологий. Например, сверточные нейронные сети (convolutional neural networks или CNN) отобрали себе большой кусок задач по генерации фич, ранее решаемых классическими методиками CV: HOG, SIFT, RANSAC и т.д.
Маппинг, классификация изображений, построение маршрута для дронов и беспилотных автомобилей — множество задач, связанных с генерацией фич, классификацией, сегментацией изображений могут быть эффективно решены с помощью сверточных нейронных сетей.

MultiNet как пример нейронной сети (трех в одной), которую мы будем использовать в одном из следующих постов. Источник.
Читать полностью »
