Рубрика «ml» - 2

Новости о машинном обучении Apple в 2020 году - 1
В 2020 году машинное обучение на мобильных платформах перестало быть революционным новшеством. Интеграция интеллектуальных функций в приложения стала стандартной практикой.

К счастью, это вовсе не означает, что Apple прекратила разрабатывать инновационные технологии.

В этой публикации я кратко расскажу о новостях в отношении платформы Core ML и других технологий искусственного интеллекта и машинного обучения в экосистеме Apple.Читать полностью »

Снятся ли выключателям вопросы морали (и электроовцы)? - 1

Прямо сейчас в компьютерных сетях происходит революция: устройства все лучше оценивают происходящее вокруг себя, при этом анализируя данные локально, то есть «здесь и сейчас». Благодаря этому устройства могут предложить людям все бОльшую функциональность, не обращаясь к облаку. Но смогут ли в итоге выключатели освещения озаботится вопросами морали?
Читать полностью »

Почему нам нужен DevOps в сфере ML-данных - 1

Развертывание машинного обучения (machine learning, ML) в продакшн – задача нелегкая, а по факту, на порядок тяжелее развертывания обычного программного обеспечения. Как итог, большинство ML проектов так никогда и не увидят света — и продакшена — так как большинство организаций сдаются и бросают попытки использовать ML для продвижения своих продуктов и обслуживания клиентов.

Насколько мы можем видеть, фундаментальное препятствие на пути большинства команд к созданию и развертыванию ML в продакшн в ожидаемых масштабах заключается в том, что нам все еще не удалось привнести практики DevOps в машинное обучение. Процесс создания и развертывания моделей ML частично раскрыт уже вышедшими MLOps решениями, однако им недостает поддержки со стороны одной из самых трудных сторон ML: со стороны данных.
Читать полностью »

Ваша первая нейронная сеть на графическом процессоре (GPU). Руководство для начинающих - 1

В этой статье я расскажу как за 30 минут настроить среду для машинного обучения, создать нейронную сеть для распознавания изображений a потом запустить ту же сеть на графическом процессоре (GPU).

Для начала определим что такое нейронная сеть.

В нашем случае это математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы.

Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение.

С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавания образов, дискриминантного анализа, методов кластеризации и прочих методов.

Оборудование

Сначала разберемся с оборудованием. Нам необходим сервер с установленной на нем операционной системой Linux. Оборудование для работы систем машинного обучения требуется достаточно мощное и как следствие дорогое. Тем, у кого нет под рукой хорошей машины, рекомендую обратить внимание на предложение облачных провайдеров. Необходимый сервер можно получить в аренду быстро и платить только за время использования.
Читать полностью »

Привет!

Веб-браузеры медленно но верно реализуют большинство функций операционной системы, и остается все меньше причин разрабатывать нативное приложение, если можно написать веб-версию (PWA). Кроссплатформенность, богатое API, высокая скорость разработки на TS/JS, и даже производительность движка V8 — все идет в плюс. Браузеры уже давно умеют работать с видеопотоком и запускать нейронные сети, то есть мы имеем все компоненты для создания системы видеонаблюдения с распознаванием объектов. Вдохновленный этой статьей, я решил довести демо-пример до уровня практического применения, чем и хочу поделиться.

Приложение записывает видео с камеры, периодически отправляя кадры на распознавание в COCO-SSD, и если обнаружен человек — фрагменты видеозаписи порциями по 7 секунд начинают отправляться на указанный емейл через Gmail-API. Как и во взрослых системах — ведется предзапись, то есть мы сохраняем один фрагмент до момента детекции, все фрагменты с детекцией, и один после. Если интернет недоступен, или возникает ошибка при отправке — видеозаписи сохраняются в локальной папке Downloads. Использование емейла позволяет обойтись без серверной части, мгновенно оповестить хозяина, а если злоумышленник завладел устройством и взломал все пароли — он не сможет удалить почту у получателя. Из минусов — перерасход трафика за счет Base64 (хотя для одной камеры вполне хватает), и необходимость собирать итоговый видеофайл из множества емейлов.

Работающее демо здесь.

Проблемы возникли следующие:
Читать полностью »

Сегодня я хочу рассказать про свой опыт генерации текста песен с помощью python и библиотеки Markovify

Дисклеймер: автор хотел повеселить себя вечером и не придумал ничего лучше, как:

В качестве корпуса для "обучения" цепи я буду использовать текст песен группы Кис Кис.

image

Пикча выше иллюстрирует то как работает цепь Марокова. А вот неплохая статья.

Читать полностью »

Статья является кратким обзором о сертификации по программе IBM Data Science Professional Certificate.

Будучи новичком в Python, мне пришлось столкнуться с реализацией задач:

  • Загрузка и парсинг HTML таблиц
  • Очистка загруженных данных
  • Поиск географических координат по адресу объекта
  • Загрузка и обработка GEOJSON
  • Построение интерактивных тепловых карт (heat map)
  • Построение интерактивных фоновых картограмм (choropleth map)
  • Преобразование географических координат между сферической WGS84 и картезианский системой координат UTM
  • Представление пространственных географических объектов в виде гексагональная сетки окружностей
  • Поиск географических объектов, расположенных на определенном расстоянии от точки
  • Привязка географических объектов к полигонам сложной формы на поверхности
  • Описательные статистический анализ
  • Анализ категорийных переменных и визуализация результатов
  • Корреляционный анализ и визуализация результатов
  • Сегментация с использованием k-Mean кластеризации и elbow метода
  • Анализ и визуализация кластеров

Читать полностью »

Использование машинного обучения в статическом анализе исходного кода программ

Машинное обучение плотно укоренилось в различных сферах деятельности людей: от распознавания речи до медицинской диагностики. Популярность этого подхода столь велика, что его пытаются использовать везде, где только можно. Некоторые попытки заменить классические подходы нейросетями оканчиваются не столь уж успешно. Давайте взглянем на машинное обучение с точки зрения задач создания эффективных статических анализаторов кода для поиска ошибок и потенциальных уязвимостей.
Читать полностью »

Если почитать обучение по автоэнкодерам на сайте keras.io, то один из первых посылов там звучит примерно так: на практике автоэнкодеры почти никогда не используются, но про них часто рассказывают в обучалках и народу заходит, поэтому мы решили написать свою обучалку про них:

Their main claim to fame comes from being featured in many introductory machine learning classes available online. As a result, a lot of newcomers to the field absolutely love autoencoders and can't get enough of them. This is the reason why this tutorial exists!

Тем не менее, одна из практических задач, для которых их вполне себе можно применять — поиск аномалий, и лично мне в рамках вечернего проекта потребовался именно он.

На просторах интернетов есть очень много туториалов по автоэнкодерам, нафига писать еще один? Ну, если честно, тому было несколько причин:

  • Сложилось ощущение, что на самом деле туториалов примерно 3 или 4, все остальные их переписывали своими словами;
  • Практически все — на многострадальном MNIST'е с картинками 28х28;
  • На мой скромный взгляд — они не вырабатывают интуицию о том, как это все должно работать, а просто предлагают повторить;
  • И самый главный фактор — лично у меня при замене MNIST'а на свой датасет — оно все тупо переставало работать.

Дальше описан мой путь, на котором набиваются шишки. Если взять любую из предложенных плоских (не сверточных) моделей из массы туториалов и втупую ее скопипастить — то ничего, как это ни удивительно, не работает. Цель статьи — разобраться почему и, как мне кажется, получить какое-то интуитивное понимание о том, как это все работает.

Я не специалист по машинному обучению и использую подходы, к которым привык в повседневной работе. Для опытных data scientists наверное вся эта статья будет дикой, а для начинающих, как мне кажется, может что-то новое и встретится.

Читать полностью »

Привет! Мы участники программы Tinkoff Internship, и в этой статье хотим рассказать об отборе, внутренней обстановке, задачах и наших впечатлениях. Надеемся, это будет полезно и будущим интернам, и тем, кому просто интересна компания.

image
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js