Рубрика «float»

Данная статья посвящена детальному разбору числового типа данных float.

Что такое тип данных в программировании?

Тип данных это метод хранения блока битов в определённом порядке и по определённым алгоритмам (правилам), чтобы при декодировании битов можно было получить достоверные данные.

Существует две группы типов данных:

  1. Примитивные

  2. Структурированные

Примитивные типы данных делятся на целочисленные, вещественные, символьный, строковый, логический.

Читать полностью »

Как следует отображать на экране результат деления 3.0 на 10.0 ? Сколько цифр следует вывести, если пользователь не указал точность?

Скорее всего, вы даже не знали, что вывод на экран чисел с плавающей запятой — это сложная проблема, настолько сложная, что по ней написаны десятки научных статей, причём последний прорыв был относительно недавно, в 2016 году. На самом деле, это одна из самых сложных частей поддержки чисел с плавающей запятой в среде выполнения языка.

Давайте продолжим разговор о самой неоптимизированной в мире библиотеке эмуляции плавающей точки при помощи целочисленной арифметики.

Читать полностью »

*Все примеры здесь рассматриваются для 64 битных чисел(все примеры аналогичны и для других значений), если не указано иное.

Читать полностью »

Ещё одна причуда Python, исследование её подноготной и попытка понять, почему так случается.

Недавно в сети X был популярен этот твит (см. скриншот), и я обратил внимание. Это очередной сюрприз в Python, связанный с характерными для него уникальными деталями реализации.

Все числа равны, но некоторые равнее. Как в Python сравниваются Int и Float - 1Читать полностью »
Первые новинки C++26: итоги летней встречи ISO - 1

На недавней встрече комитет C++ активно взялся за C++26. Уже есть первые новинки, которые нас будут ждать в готовящемся стандарте C++:

  • улучшенный static_assert,
  • переменная _,
  • оптимизация и улучшение для std::to_string,
  • Hazard Pointer,
  • Read-Copy-Update (так же известное как RCU),
  • native_handle(),
  • целая вереница классов *function*,
  • множество доработок по constexpr,
  • std::submdspan,
  • и прочие приятные мелочи.

Читать полностью »

Казалось бы, совершенно непонятно, зачем живым людям в 2021 году решать задачу под названием «печатаем обычное вещественное число». Вроде бы это должно быть уже решено — причём примерно в тот момент, когда эти вещественные числа изобрели. Но оказывается, что нет. 

Привет, меня зовут Андрей, я занимаюсь инфраструктурой поиска в Авито и сегодня расскажу, зачем это вообще нужно — печатать вещественные числа. Какие есть методы (один) решения этой боевой задачи и как это получилось у нас в проекте, в рамках наших очень странных требований. А также, зачем таки подобное, хм, умеренно эзотерическое знание, можетЧитать полностью »

image

Недавно я вернулся к анализу погрешностей чисел с плавающей запятой, чтобы усовершенствовать некоторые детали в следующей редакции книги Physically Based Rendering. Числа с плавающей запятой — интересная область вычислений, полная сюрпризов (хороших и плохих), а также хитрых трюков, позволяющих избавиться от неприятных неожиданностей.

В процессе работы я наткнулся на этот пост на StackOverflow, из которого узнал об изящном алгоритме точного вычисления $a times b-c times d$.

Но прежде чем приступать к алгоритму, нужно понять, что же такого хитрого в выражении $a times b-c times d$? Возьмём $a=33962.035$, $b=-30438.8$, $c=41563.4$ и $d=-24871.969$. (Это реальные значения, которые получились у меня во время запуска pbrt.) При 32-битных значениях float получаем: $a times b=-1.03376365 times 10^9$ и $c times d=-1.03376352 times 10^9$. Выполняем вычитание, и получаем $-128$. Но если выполнить вычисления с двойной точностью, а в конце преобразовать их во float, то получится $-75.1656$. Что произошло?

Проблема в том, что значение каждого произведения может сильно выйти за нижнюю границу $-1 times 10^9$, где расстояние между представимыми значениями с плавающей запятой очень велико — 64. То есть при округлении $a times b$ и $c times d$ по отдельности до ближайшего представимого float, они превращаются в числа, кратные 64. В свою очередь, их разность будет кратной 64, и не останется никакой надежды, что она станет к $-75.1656$ ближе, чем $-64$. В нашем случае результат оказался ещё дальше из-за того, как два произведения были округлены в $-1 times 10^9$. Мы напрямую столкнёмся со старым добрым катастрофическим сокращением1.
Читать полностью »

Месяц Posit объявлен на Хабре открытым, а значит я не могу пройти мимо и проигнорировать обрушившуюся на них критику. В предыдущих сериях:

Новый подход может помочь нам избавиться от вычислений с плавающей запятой
Posit-арифметика: победа над floating point на его собственном поле. Часть 1
Posit-арифметика: победа над floating point на его собственном поле. Часть 2
Испытания Posit по-взрослому

Думаю многие из вас могут с ходу вспомнить хотя бы один случай из истории, когда революционные идеи на момент своего становления наталкивались на неприятие сообществом экспертов. Как правило, виной такому поведению выступает обширный багаж уже накопленных знаний, не позволяющий взглянуть на старую проблему в новом свете. Таким образом, новая идея проигрывает по характеристикам устоявшимся подходам, ведь оценивается она только теми метриками, которые считались важными на предыдущем этапе развития.

Именно с таким неприятием на сегодняшний день сталкивается формат Posit: критикующие зачастую просто “не туда смотрят“ и даже банально неправильно используют Posit в своих экспериментах. В данной статье я попытаюсь объяснить почему.Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js