Рубрика «микроэлектроника»

Чего стоит разработать быстродействующий аналого-цифровой преобразователь, почти не имея опыта? Насколько сильно наше отставание в этой области? Есть ли в этой нише шанс найти коммерческое применение своей продукции и отщипнуть хоть кусочек рынка у гигантов мира сего? Выпуская в свет новый 16-битный 80 МГц АЦП, хотим порассуждать на эти темы и рассказать о самой микросхеме и опыте её создания.

image

Читать полностью »

2D-полупроводники спасут закон Мура? - 1

Использование дисульфида молибдена в качестве смазки известно с 17 века, когда переселенцы применяли его для смазывания осей тележек. С 1940-х годов вещество широко используется как компонент смазочных материалов. В природе дисульфид молибдена встречается в виде минерала — молибденита (на фото)

Закон Мура — эмпирическое предположение, что число транзисторов в интегральных схемах удваивается каждые несколько лет. Однако этот закон начал давать сбои, поскольку транзисторы теперь настолько малы, что современные технологии на основе кремния не могут предложить дальнейших возможностей для уменьшения их физических размеров.

Группа учёных из Университета Нового Южного Уэльса (Австралия) и Калифорнийского университета в Лос-Анджелесе (UCLA) опубликовала описание технологии производства двумерных полупроводников, которые теоретически могут решить проблему.
Читать полностью »

Французский институт CEA-Leti показал, как с помощью кристалла-переходника создать 96-ядерный процессор - 1

17 февраля на Международной конференции по полупроводниковым интегральным микросхемам (International Solid-State Circuit Conference, ISSCC) французский институт CEA-Leti представил новый метод построения многоядерных процессоров. Чиплеты с несколькими ядрами объединяются в крупное устройство размещением их на специальной подложке с активными элементами.

Исследователи как описали теоретический задел для масштабирования системы до 512 ядер, так и подкрепили его 96-ядерным прототипом на 6 чиплетах. Институт назвал несколько достоинств своего решения.
Читать полностью »

Промежуточные техпроцессы, разные типы транзисторов, и множество других вариантов добавляют неопределённости в процесс производства электроники

Производители электроники готовятся к следующей волне передовых техпроцессов, но их клиенты столкнутся с кучей сбивающих с толку вариантов – разрабатывать ли чипы по техпроцессу 5 нм, подождать 3 нм, или выбрать нечто среднее.

Путь к 5 нм хорошо определён, в отличие от 3 нм. После этого ландшафт становится запутанным, поскольку фабрики добавляют промежуточные техпроцессы, типа 6 нм и 4 нм. Переход на любые из этих техпроцессов весьма дорог, а преимущества не всегда очевидны.

Ещё один повод для беспокойства – сжимающаяся производственная база. В случае самых передовых техпроцессов выбор производителей оказывается невелик. В индустрии раньше было несколько ведущих производителей, но со временем эта область сузилась из-за резко возросшей стоимости и сокращения пользовательской базы. В целом, чем меньше производителей, тем меньше вариантов по технологиям и ценнику.
Читать полностью »

image

В третьей части автор оригинальной статьи рассуждает о Зеленограде, памяти и смысле миниатюризации на пальцах.

Disclaimer: огда-то давно и сам баловался написанием статей про изготовление чипов, а в серии статей «Взгляд Изнутри» даже заглядывал внутрь оных, т.е. тема мне крайне интересна. Естественно, я бы хотел, чтобы сам автор оригинальной статьи опубликовал её на Хабре, но в связи с занятостью он разрешил мне перенести её сюда. К сожалению, правила Хабра не разрешают прямую копи-пасту, поэтому я добавил ссылки на источники, картинки и немножко отсебятины и постарался чуть-чуть выправить текст. Да, и статьи (1 и 2) по данной теме от amartology знаю и уважаю.
Читать полностью »

image

В первой части мы рассмотрели вкратце физику кремния, технологии микроэлектроники и технологические ограничения. Теперь поговорим о физических ограничениях и физических эффектов, которые влияют на размеры элементов в транзисторе. Их много, поэтому пройдемся по основным. Здесь придется уже влезть в физику, иначе никак.

Disclaimer: Когда-то давно и сам баловался написанием статей про изготовление чипов, а в серии статей «Взгляд Изнутри» даже заглядывал внутрь оных, т.е. тема мне крайне интересна. Естественно, я бы хотел, чтобы сам автор оригинальной статьи опубликовал её на Хабре, но в связи с занятостью он разрешил мне перенести её сюда. К сожалению, правила Хабра не разрешают прямую копи-пасту, поэтому я добавил ссылки на источники, картинки и немножко отсебятины и постарался чуть-чуть выправить текст. Да, и статьи (1 и 2) по данной теме от amartology знаю и уважаю.
Читать полностью »

image
Возможное фото 10 нм IceLake. Источник

Странные вещи творятся на процессорном рынке. Мировой лидер в лице фирмы Intel пятый год бьется в попытках перейти на 10 нм техпроцесс. Изначально заявляли о переходе на 10 нм в 2015-м году, потом в 2016-м, 2017-м… На дворе 2019-й, а 10-нм от Intel в серии так и нет. Ну как нет, есть отдельные опытные/инженерные образцы, но высокий выход годных — проблема. Реальный переход ожидается не раньше 2022 года уже.

Собственно, это и стало причиной дефицита процессоров Intel на рынке. Для его преодоления компания расширяет производство модифицированных 14 нм процессоров (теже Lake только в профиль) и даже возвращается к 22 нм. Казалось бы регресс налицо. А в это время корейский Samsung, тайваньский TSMC и примкнувший к ним AMD с платформой ZEN 2 рапортуют о вводе в серию аж 7 нм и вот-вот перейдут на 5 нм. Достали из пыльного шкафа «закон Мура» и объявили его живее всех живых. Скоро будет и 3 нм, и 2 нм, и даже 1 нм (sic!) — pourquoi pas?!

Что же произошло? Неужто ушлые азиаты обошли клятых пендосов в ключевой отрасли? Можно открывать шампанское?

Disclaimer: Данную статью я нашёл совершенно случайно и был крайне поражён, насколько грамотно и подробно в ней раскрываются проблемы современной микроэлектроники, в частности, смерть закона Мура и маркетинг. Когда-то давно и сам баловался написанием статей про изготовление чипов, а в серии статей «Взгляд Изнутри» даже заглядывал внутрь оных, т.е. тема мне крайне интересна. Естественно, я бы хотел, чтобы сам автор оригинальной статьи опубликовал её на Хабре, но в связи с занятостью он разрешил мне перенести её сюда. К сожалению, правила Хабра не разрешают прямую копи-пасту, поэтому я добавил ссылки на источники, картинки и немножко отсебятины и постарался чуть-чуть выправить текст. Да, и статьи (1 и 2) по данной теме от amartology знаю и уважаю.
Читать полностью »

Несколько лет назад довелось мне попробовать свои силы в заманивании пытливых отроков в разработку микроэлектроники. А дальше было, как в известной пословице: «Коготок увяз — птичке пропасть!» Остановиться уже не смог. Хочу поделиться с общественностью этим опытом, возможно, другие инженеры-электронщики тоже захотят устроить что-то подобное. Грамотнее народ – лучше жизнь.

Началось все с того, что мы почти случайно договорились с Межрегиональной компьютерной школой в подмосковной Дубне о проведении для их слушателей чего-то вроде лекции о проектировании микропроцессоров. Тема эта известна мне не понаслышке, два десятка лет в ней варюсь. Довелось поработать и в отечественных, и в зарубежных фирмах. Ну и почему бы подросткам не рассказать, в чем состоит работа инженеров, выдумывающих внутренности «процов». Это не среди таких же зануд на конференции выступать — перед детьми просто оттарабанить текст не получится. Если им будет совсем не интересно, то плевать им на почетные седины, блистательные лысины и надутые щеки. Будут зевать, не стесняясь, и ерзать на стульях в надежде сбежать поскорее. Но есть и плюсы — всякие вольности, шутки, неточности и упрощения не вызовут негодования и требований сжечь еретика-докладчика. В общем, судя по количеству вопросов в процессе общения, первый блин вышел не комом, стало интересно двигаться дальше.

image

Читать полностью »

В середине 2018 года была опубликована работа по электрофизиологии головного мозга крыс, совместно с которой был выложен в открытый доступ один уникальный набор данных. Уникальность датасета состоит в том, что в нем присутствуют одновременные записи локального полевого потенциала с помощью нового высокоплотного электрода Neuropixels (проба, или probe) и патч-электрода от клетки, находящейся вблизи пробы. Интерес к подобным записям не только фундаментальный, но и прикладной, потому что позволяет валидировать модели для анализа нейрональной активности, зарегистрированной современными пробами. А это, в свою очередь, непосредственно касается разработки новых нейропротезов. В чем принципиальная новизна, и почему этот датасет такой важный, — я расскажу под катом.

Микроэлектроника, нейрофизиология и машинное обучение, взболтать, но не перемешивать - 1
КДПВ: результат моделирования внеклеточного потенциала вблизи одного нейрона при генерации потенциала действия (источник). Цветом обозначена амплитуда потенциала. Данная иллюстрация будет важна для дальнейшего понимания.
Читать полностью »

Введение

Если вы уже занимаетесь стравливанием и фотографированием микросхем, то мало что сможете почерпнуть из этой статьи. Однако, если вы хотите сфотографировать микросхему, но не знаете с чего начать, то эта статья определённо для вас. Кроме того, имейте в виду, что на первых шагах освоения этой увлекательной процедуры, вам скорее всего будет немного больно.

Пожалуйста, соблюдайте крайнюю осторожность, тогда вам больно хоть и будет, но не сильно. Также, если у вас есть хотя бы крохотная наклонность к здравому смыслу, – проводите данную процедуру в специально оборудованной химической лаборатории, под присмотром опытных специалистов; и не становитесь жертвой своей самонадеянности, думая, что после прочтения этого ликбеза, вы сразу сможете проводить данную процедуру самостоятельно. Более того, если вы без обращения к Google не знаете, что во что нужно лить (кислоту в воду или воду кислоту) и не знаете, чем для вас будет чревато это незнание, – пожалуйста прекратите читать этот ликбез и сначала запишитесь на курсы в какой-нибудь местный техникум, где есть хорошая химическая лаборатория.

Кислоту в воду или воду в кислоту?

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js