Рубрика «chain of thoughts»

Когда‑то я посмотрел очень полезное видео про ML, где для аналогии нейронной сети приводилось понятие архиватора. Помню меня это впечатлило и определённо расширило кругозор. Странно, почему тогда я сразу не перенёс это на людей — скорее всего потому, что принято брать мозг за эталон и с него примерять разные наряды на искусственные нейронные сети, а не наоборот.

Читать полностью »

Новое исследование учёных из Университета штата Аризона показывает: знаменитое «цепочечное рассуждение» (Chain-of-Thought, CoT) в больших языковых моделях (LLM) скорее похоже на «хрупкий мираж», чем на проявление подлинного интеллекта. Эта работа продолжает традицию критического анализа глубины рассуждений LLM, но в отличие от предыдущих исследований предлагает уникальный взгляд через призму «распределения данных», который позволяет понять, где и почему CoT систематически даёт сбой.

Дисклеймер: это вольная адаптция Читать полностью »

LLM-судья: как LLM отсекает правду от лжи? - 1

LLM-as-a-judge — распространённая техника оценки продуктов на основе LLM.

Популярность этой техники обусловлена практичностью: она представляет собой удобную альтернативу дорогостоящей человеческой оценке при анализе открытых текстовых ответов.

Читать полностью »

Анализ DeepSeek R1-Zero и R1 - 1

R1-Zero важнее, чем R1

Цель ARC Prize Foundation — определять и измерять потенциал идей, делающих вклад в создание AGI. Для этого мы стремимся создавать самую надёжную международную среду для инноваций.

Пока у нас нет сильного искусственного интеллекта (AGI), а инновации по-прежнему ограничены: увеличение масштабов чистого предварительного обучения LLM — ошибочный путь, хоть он и остаётся доминирующим в отрасли ИИ и в глазах широкой публики.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js