Рубрика «IGBT»

Часть 1
Часть 2
Часть 3
Часть 4.1
Часть 4.2
Часть 5
Часть 6

Как обычно небольшая лирика… Товарищи! Те, кто берут и публикуют мои статьи, материалы и прочие ништяки — указывайте пожалуйста настоящего автора и первоисточник: R4ABI.ru

Думаю все прекрасно понимают, что я могу банально продавать свои проекты или сделать скачку за монеты и все это купят, но не хочется это делать. Мне хочется давать народу хорошие, разжеванные проекты и учебные материалы, которые вы не найдете ни где больше, а тем более не получите помощь в сборке и консультации многочасовые. Я выкладываю исходники всех файлов совершенно безвозмездно и предлагаю несколько вариантов с целью экономии ваших же средств!

За все свои старания я не требую никакой благодарности, мне достаточно, что вы читаете и вам нравятся мои статейки мой труд)) Но будьте добры — не воруйте материал и не присваивайте им свое авторство! Чтобы мне не писали админы сторонних сайтов и не просили удалить меня мои же статьи, заявляя что не я автор, а Василий Петрович Залупкин, который настоящий автор и опубликовал эти статьи именно у него на сайте! И пофигу, что на 2 месяца позже…

Надеюсь те, кто так поступал меня услышат и будут более честны, даже не со мной, а с собой. Спасибо за внимание!))

После публикации статей №5 и №6 из своего цикла по ИБП я решил проверить их в «железе». Стоит вспомнить, что все статьи в цикле адаптированные под самостоятельную сборку варианты моих коммерческих проектов, поэтому давать голую без подтверждения считаю кощунственным. Могу сказать сразу — результат оказался в разы хуже ожидаемых! Необходимо переработать!

Так же прошу обратить внимание, что в данной статье я уже выкладываю схему полностью готового устройства! В него пошли: активный корректор мощности + силовая плата зарядного устройства + плата управления зарядного устройства + схема дежурного питания (из части 3).

Еще очень важный момент: все кто уже купили у меня КИТ наборы для сборки ИБП получили именно этот вариант схемотехники! Так, что не переживаем — вы получили лучший продукт!

Схемотехника мощного зарядного устройства с активным корректором коэффициента мощности

Стоит отметить, что вариант из части 5 и части 6 является так же рабочим и имеет место быть как минимум потому, что он получился дешевле на 20%, а это однако повод!

Не буду томить и сразу покажу конечный вариант схемотехники, который у меня получился и соответствует всем заявленным ранее требованиям, а главное стабильно проработал у меня под 110-120% нагрузкой в течение 3-х недель. Поэтому с чистой совестью представляю вам конечный вариант:

Полная схемотехника активного ККМ и зарядного устройства для ИБП 3 кВт - 1

Рисунок 1 — Схема реализации дежурного питания, знакомая по части 3

Полная схемотехника активного ККМ и зарядного устройства для ИБП 3 кВт - 2

Рисунок 2 — Плата управления с генератором, драйверами и защитами
Читать полностью »

Часть 1
Часть 2
Часть 3
Часть 4.1
Часть 4.2
Часть 5

Пролог

И снова здравствуйте!..
К сожалению статья моя задержалась, т.к. возник срочный проект по работе, а так же появились интересные трудности при реализации корректора коэффициента мощности (далее ККМ). А вызваны они были следующим — мы в своем производстве для управления ККМ используем «заказную» микросхему, которую нам под наши задачи производит дружественная особенно в 1941-м Австрия и соответственно в продаже ее не встретить. Поэтому встала задача переделать данный модуль под доступную элементарную базу и мой выбор пал на микросхему ШИМ-контроллер — L6561.
Почему именно она? Банальная доступность, вернее нашел ее в «Чип и Дип», почитал даташит — понравилась. Заказал сразу 50 шт, т.к. дешевле и в своих любительских проектах у меня уже есть несколько задач для нее.

Теперь о главном: в данной стать я расскажу как почти с нуля вспоминал о проектирования однотактных преобразователей (казалось бы при чем тут они), почему убил десяток ключей и как этого избежать вам. Данная часть расскажет теорию и что бывает если пренебрегать ей. Практическая же реализация выйдет в следующей части как я и обещал вместе с зарядным устройством, т.к. они по сути являются одним модулем и тестировать их надо вместе.
Забегая вперед скажу, что для следующей части уже заготовил пару десятков фотографий и видео, где мое ЗУ не надолго «переквалифицировалось» сначала в сварочный аппарат, а затем в блок питания для «козла». Те, кто работают на производстве поймут что это за зверь и сколько он потребляет для нашего согревания)))

А теперь к нашим баранам…
Читать полностью »

Думаю, мало кто в курсе, что вся возобновляемая энергетика сегодня зависит от работы исследовательских ядерных реакторов. Речь идет о получаемом в нем ядерно-легированном кремнии (ЯЛК), который используется для производства высоковольтных силовых полупроводников, без которых ВИЭ невозможны. А теперь подробнее.

image
12-пульсные выпрямители (висят слева) ультравысоковольтных линий электропередачи тоже являются важными потребителями ядерного-легированного кремния.

Читать полностью »

Пролог

Хотелось бы поприветствовать всех кто увлекается и занимается электроникой! Данная серия публикаций будет посвящена полному циклу проектирования мощного источника бесперебойного питания мощность 3,2 кВт и самое главное — с чистым синусом на выходе.

Немного о себе расскажу — работаю инженером-электронщиком на предприятии, занимающимся производством станков и линий с ЧПУ, а так же мощных импульсных устройств: ИБП, стабилизаторы напряжения, инверторы. Вместе с предприятием прошел путь от проектирования систем от 1 кВт и до 1135 кВт.

Мои публикации будут носить больше учебный характер с попытками донести до интересующихся основы силовых расчетов, трассировки плат и ВЧ цепей, программирование микроконтроллеров STM32, а так же ПЛИС от Altera. И конечно еще множество сложных, но интересных вещей. Пожалуй, начнем…
Читать полностью »

Применение синтер паст в современных силовых полупроводниковых приборах

В данной статье показаны современные IGBT и MOSFET силовые модули. Показана технология сборки этих силовых модулей и недостатки данной технологии. Рассмотрены синтер пасты и возможность их применения в силовых модулях. Показаны результаты испытания синтер пасты на однородность, пористость и адгезию.
Читать полностью »

Многие из вас замечали, что в метро очень жарко летом и стоит неприятный запах. Вот и я однажды, задумался, а откуда же эта жара и этот запах. На самом деле метро пахнет 4-и запахами: запах состава для защиты дерева шпал от гниения, запах нагретых проводов, запах от мелкодисперсной пыли тормозных колодок и запах жженого мелкодисперсного железа. Я подумал, это же вредно для здоровья.

В другой раз, выходя из вагона, я заметил, что из под вагона поднимается теплый поток воздуха. И я подумал, откуда же он. И тут я вспомнил, что вагоны электрические и что при торможении торможение происходит за счет двигателей (электродинамическое торможение). Но, почему бы не использовать эту энергию? Ведь тогда не будет нагрева проводов, не будет пыль от тормозных колодок. Для этого нужна система рекуперации.

Рекуперация позволяет вернуть энергию обратно. Подобная система реализована на Toyota Prius Hybrid.

Но вот в чем проблема, куда же ее вернуть? Тут 2 варианта: или обратно в электросеть или где-нибудь ее запасти. Вернуть обратно в электросеть — нужные другие тяговые подстанции и сами вагоны другие нужны. Плюс нельзя производить рекуперацию между поездами, которые питаются от разных тяговых подстанций. В итоге эффект рекуперации достигает 15%, что достаточно мало. И тяговые подстанции переоборудовать дорого и долго. А сами вагоны обновляются раз в 30 лет. Так что этот вариант достаточно долгий.

Второй вариант — возвращать энергию обратно в поезд. Тогда достаточно переоборудовать поезд и КПД может достигать 80%.

Для хранения энергии лучше использовать не аккумуляторы, а ионистры.

Преимущества:

<habrcut/>
1. Не требуются тяговые подстанции для переоборудования поездов.
2. Поезд может самостоятельно передвигаться до ближайшей станции для высадки пассажиров в случае нарушения электроснабжения.
3. Можно переоборудовать существующие поезда.
4. Нет проблемы передачи энергии от одного поезда к другому. Т. е. не нужна дополнительная электросеть в случае сильно неравномерной нагрузки поездов по станциям метрополитена.

Недостатки:

<habrcut/>1. Стоимость ионистра.
2. Увеличение массы поезда за счет ионистров (не так много по отношению к массе поезда и пассажиров).

Преимущества ионистров по сравнению с аккумуляторами:
<habrcut/>
1. Высокая скорость заряда/разряда – большой разрядный ток.
2. Простота зарядного устройства.
3. Малая деградация после сотен или даже тысяч циклов заряд/разряд.
4. Возможность заряда/разряда при низких температурах.

Недостатки:
<habrcut/>
1. Меньшая удельная энергия.
2. Зависимость напряжения от степени заряженности.

Таким образом ионистры больше подходят для рекуперации, чем аккумуляторы в качестве мобильного источника энергии.

А что такое ионистр? Ионистр — он же суперконденсатор, это по сути электрический конденсатор, но с двойным электрическим слоем. По сути это гибрид аккумулятора и конденсатора. В электролите (как в аккумуляторе) плавают заряды (как в конденсаторе), которые притягиваются к друг другу. Для того, чтобы эти плавающие заряды друг с другом не столкнулись и не нейтрализовали друг друга, между ними находится дилектрик. Таким образом двойной электрический слой образуют
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js