Рубрика «scipy»

Все об устройстве MSK144 с примерами на Python (часть 2) - 1

MSK144 — цифровой протокол, разработанный Джо Тейлором (K1JT) и его командой в 2016 году для проведения связей через метеорное рассеивание.

В предыдущей частиЧитать полностью »

Всё об устройстве FT8-FT4 с примерами на Python - 1

FT8 — цифровой радиолюбительский протокол, разработанный Джо Тейлором (K1JT) и Стивом Франке (K9AN) в 2017 году. В этой статье будут рассмотрены подробности работы протокола.

Читать полностью »

Python давно перестал быть просто «языком скриптов» и уверенно вышел в лидеры среди инструментов для нейросетей. Его синтаксис понятен «с первого взгляда», а мощные библиотеки позволяют сосредоточиться на идее, а не на рутине. Сегодня, от первых численных расчётов в NumPy до сложных моделей в TensorFlow и PyTorch, всё строится вокруг привычного Python-кода. 

В этой статье мы пройдём путь от базовых скриптов до «ручных» нейросетей и ноукод-решений, чтобы понять, почему именно Python стал стандартом в мире ИИ и как с его помощью оживить ваши первые нейросети.

Как Python стал удобным языком для искусственного интеллекта

Читать полностью »

Всё об устройстве и работе SSTV с примерами на Python - 1

SSTV (slow-scan television) — телевидение с медленной разверткой, узкополосный формат передачи данных, позволяющий передавать изображения через эфир. В этой статье будут рассмотрены подробности кодирования, декодирования SSTV-сигнала.

Читать полностью »

Всем привет!

Часто ко мне обращаются люди с вопросами по задачам из области цифровой обработки сигналов (ЦОС). Я подробно рассказываю нюансы, подсказываю нужные источники информации. Но всем слушателям, как показало время, не хватает практических задач и примеров в процессе познания этой области. В связи с этим я решил написать краткий интерактивный курс по цифровой обработке сигналов и выложить его в открытый доступ.

Большая часть обучающего материала для наглядного и интерактивного представления реализована с использованием Jupyter Notebook. Предполагается, что читатель имеет базовые знания из области высшей математики, а также немного владеет языком программирования Python.

Курс лекций «Основы цифровой обработки сигналов» - 1
Читать полностью »

Как Netflix использует Питон - 1

Поскольку многие из нас готовятся к конференции PyCon, мы хотели немного рассказать, как Python используется в Netflix. Мы применяем Python на всём жизненном цикле: от принятия решения, какие сериалы финансировать, и заканчивая работой CDN для отгрузки видео 148 миллионам пользователей. Мы вносим свой вклад во многие пакеты Python с открытым исходным кодом, некоторые из которых упомянуты ниже. Если что-то вас интересует, посмотрите наш сайт вакансий или ищите нас на PyCon.
Читать полностью »

SciPy, оптимизация с условиями - 1

SciPy (произносится как сай пай) — это основанный на numpy математический пакет, включающий в себя также библиотеки на C и Fortran. С SciPy интерактивный сеанс Python превращается в такую же полноценную среду обработки данных, как MATLAB, IDL, Octave, R или SciLab.

В этой статье рассмотрим основные приемы математического программирования — решения задач условной оптимизации для скалярной функции нескольких переменных с помощью пакета scipy.optimize. Алгоритмы безусловной оптимизации уже рассмотрены в прошлой статье. Более подробную и актуальную справку по функциям scipy всегда можно получить с помощью команды help(), Shift+Tab или в официальной документации.

Читать полностью »

SciPy, ввод и вывод в MATLAB - 1

SciPy (произносится как сай пай) — это пакет прикладных математических процедур, основанный на расширении Numpy Python. С SciPy интерактивный сеанс Python превращается в такую же полноценную среду обработки данных и прототипирования сложных систем, как MATLAB, IDL, Octave, R-Lab и SciLab. В этом посте я хотел бы рассказать о возможностях пакета ввода/вывода scipy.io, который позволяет работать с файлами данных Octave и MATLAB.

Читать полностью »

Фильтр Калмана для минимизации энтропийного значения случайной погрешности с не Гауссовым распределением - 1

Введение

На Habr математическое описание работы фильтра Калмана и особенности его применения рассматривались в следующих публикациях [1÷10]. В публикации [2] в простой и доходчивой форме рассмотрен алгоритм работы фильтра Калмана (ФК) в модели «пространства состояний», Следует отметить, что исследование систем контроля и управления во временной области с помощью переменных состояния широко используется в последнее время благодаря простоте проведения анализа [11].

Публикация [8] представляет значительный интерес именно для обучения. Очень эффективен методический приём автора, который начал свою статью с рассмотрения распределения случайной погрешности Гаусса, рассмотрел алгоритм ФК и закончил простой итерационной формулой для подбора коэффициента усиления ФК. Автор ограничился рассмотрением распределения Гаусса мотивируя это тем, что при достаточно больших $n$ (многократных измерений) закон распределения суммы случайных величин стремится к распределению Гаусса.

Теоретически такое утверждение, безусловно, справедливо, однако на практике число измерений в каждой точке диапазона не может быть очень большим. Сам R. E. Kalman получил результаты о минимуме ковариации фильтра на базе ортогональных проекций, без предположения о гауссовости ошибок измерений [12].

Целью настоящей публикации является исследование возможностей фильтра Калмана для минимизации энтропийного значения случайной погрешности с не Гауссовым распределением.
Для оценки эффективности фильтра Калмана при идентификации закона распределения или суперпозицией законов по экспериментальным данным воспользуемся информационная теорией измерений основанной на теории информации К. Шеннона, согласно которой информация, подобно физической величине, может быть измерена и оценена.
Читать полностью »

image

SciPy (произносится как сай пай) — это пакет прикладных математических процедур, основанный на расширении Numpy Python. Он значительно расширяет возможности Python, предоставляя в распоряжение пользователя команды и классы высокого уровня для управления данными и их визуализацией. С SciPy интерактивный сеанс Python превращается в такую же полноценную среду обработки данных и прототипирования сложных систем, как MATLAB, IDL, Octave, R-Lab и SciLab.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js