Рубрика «jupyter notebook»

Jupyter Notebook — любимый инструмент-среда для data scientist'ов, аналитиков, инженеров, математиков, студентов и даже для нас — самых обычных ученых в экспериментальной физике.

Этот инструмент предназначен для работы с интерпретируемыми языками и удобного графического представления данных. Долгое время мы просто считали на нем, используя Python и математические библиотеки (numpy, SciPy, matplot и т.д.). Но оказывается данная среда не так проста и имеет гораздо больший потенциал. Очень неожиданно, но Jupyter позволяет легко манипулировать электронными устройствами на микроконтроллерах, может служить чем-то вроде REPL среды для МК только без слабенького MicroPython и внушительной поддержкой переферии чипа, причем все это почти из коробки.

Эксперименты с микроконтроллерами в Jupyter Notebook - 1

Читать полностью »

Данная публикация это начало цикла статей. Если вам интересно, скажите об этом, а если не интересно, цикл на этом и закончится, тогда просто смотрите ниже список необходимого программного обеспечения и примеры.

Это не пошаговое руководство по визуализации трех- и четырехмерных данных, а подход к тому, как и чем это можно сделать и, притом, сделать качественно. Вероятно, многие из нас бывали в ситуациях, когда уже есть подготовленные с большим трудом данные, которые необходимо визуализировать, но неизвестно, как же это сделать так, чтобы не испортить все впечатление от выполненной работы. Существует много коммерческого программного обеспечения для этих целей, но мы будем рассматривать исключительно Open Source программы.

Tambora Volcano, Indonesia

Читать полностью »

Google Colab — это бесплатный облачный сервис на основе Jupyter Notebook. Google Colab предоставляет всё необходимое для машинного обучения прямо в браузере, даёт бесплатный доступ к невероятно быстрым GPU и TPU. Заранее предупрежу, что у него есть некоторые ограничения, поэтому вы не сможете использовать его для production.

С помощью Google Colab вы можете легко обучить свою модель за считанные секунды. Он поддерживает Python (2/3) из коробки, так что всё должно быть хорошо, верно?

Молчание вентиляторов. Google Colab, Javascript и TensorflowJS - 1

Читать полностью »

Многие используют в своей работе Jupyter Notebooks. Но с ростом сложности проекта появляются проблемы. В блокноте появляются ячейки с красными пометками для самого себя «перед запуском укажи число...» или «задай количество итераций исходя из...». Какой-то откат к командной строке получается.

Да и вывод данных на экран не всегда воспринимается без пояснений сторонним человеком, который привык к красивым таблицам, картинкам и прочим современным элементам интерфейса.
Читать полностью »

Для начала повторим основные горячие клавиши. Если вы их ещё не используете — начните обязательно. В долгосрочной перспективе время на изучение окупится многократно.

0. Основные горячие клавиши

  • Esc: Переключение между режимом выполнения и редактирования
  • A: Добавление пустой ячейки сверху
  • B: Добавление пустой ячейки снизу
  • DD: Удаления ячейки
  • C: Копирование ячеек
  • X: Вырезание ячеек
  • V: Вставка ячеек

1. Перезапуск блокнота

Для рестарта просто нажмите ESC + 00.

Повышение продуктивности при работе с Jupyter Notebook за 5 минут - 1

Читать полностью »

Хотите узнать о трех методах получения данных для своего следующего проекта по ML? Тогда читайте перевод статьи Rebecca Vickery, опубликованной в блоге Towards Data Science на сайте Medium! Она будет интересна начинающим специалистам.

Извлечение данных при машинном обучении - 1

Получение качественных данных — это первый и наиболее важный шаг в любом проекте по машинному обучению. Специалисты Data Science часто применяют различные методы получения датасетов. Они могут использовать общедоступные данные, а также данные, доступные по API или получаемые из различных баз данных, но чаще всего комбинируют перечисленные методы.

Цель этой статьи — представить краткий обзор трех разных методов извлечения данных с использованием языка Python. Я расскажу, как делать это с помощью Jupyter Notebook. В своей предыдущей статье я писала о применении некоторых команд, запускаемых в терминале.Читать полностью »

I came up with idea, that it would be cool to edit cell tags with help of IPython magic instead of mouse clicking and interacting with tags or metadata toolbars. So, now I can do it by typing this code directly into the cell input area:

%tags foo bar baz

Читать полностью »

This is a short article about understanding time series and main characteristics behind that.

Problem statement

We have time-series data with daily and weekly regularity. We want to find the way how to model this data in an optimal way.

Time Series Modelling - 1
Читать полностью »

Google News и Лев Толстой: визуализация векторных представлений слов с помощью t-SNE - 1

Каждый из нас воспринимает тексты по-своему, будь это новости в интернете, поэзия или классические романы. То же касается алгоритмов и методов машинного обучения, которые, как правило, воспринимают тексты в математической в форме, в виде многомерного векторного пространства.

Статья посвящена визуализации при помощи t-SNE рассчитанных Word2Vec многомерных векторных представлений слов. Визуализация позволит полнее понять принцип работы Word2Vec и то, как следует интерпретировать отношения между векторами слов перед дальнейшем использованием в нейросетях и других алгоритмах машинного обучения. В статье акцентируется внимание именно на визуализации, дальнейшее исследование и анализ данных не рассматриваются. В качестве источника данных мы задействуем статьи из Google News и классические произведения Л.Н. Толстого. Код будем писать на Python в Jupyter Notebook.
Читать полностью »

Ода Джулии

Julia. Знакомство - 1

Очень трудно передать весь восторг, который сопутствовал запуску первых программ и исправлению первых ошибок с использованием этого языка. Прост и красив как Python, немножко похож на Fortran, удобная работа с массивами и графиками, а также возможность осуществлять лютую оптимизацию и распараллеливание даже для таких чайников, как я мои одногруппники. Можно работать на разных уровнях абстракции: от высокоуровневого программирования с динамической типизацией можно спуститься до ассемблерных команд, то есть, тут вам и питонская общедоступность и скорость выполнения фортрановских считалок. Не могу отделаться от ощущения, что Mathcad, Scilab и даже, прости Господи, C++ начинают в моем сердце уходить на второй план.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js