Рубрика «clickhouse»

В этой статье будет рассматриваться проект nginx-log-collector, который будет читать логи nginx, отправлять их в кластер Clickhouse. Обычно для логов используют ElasticSearch. Для Clickhouse требуется меньше ресурсов (дисковое пространство, ОЗУ, ЦПУ). Clickhouse быстрее записывает данные. Clickhouse сжимает данные, что делает данные на диске еще компактнее. Преимущества Clickhouse видны по 2 слайдам с доклада Как VK вставляет данные в ClickHouse с десятков тысяч серверов.

Nginx-log-collector утилита от Авито для отправки логов nginx в Clickhouse - 1

Nginx-log-collector утилита от Авито для отправки логов nginx в Clickhouse - 2

Для просмотра аналитики по логам создадим дашборд для Grafana.

Кому интересно, добро пожаловать под кат.

Читать полностью »

HighLoad++ Moscow 2018, зал «Конгресс-холл». 9 ноября, 15:00

Тезисы и презентация: http://www.highload.ru/moscow/2018/abstracts/4066

Юрий Насретдинов (ВКонтакте): в докладе будет рассказано об опыте внедрения ClickHouse в нашей компании – для чего он нам нужен, сколько мы храним данных, как их пишем и так далее.

HighLoad++, Юрий Насретдинов (ВКонтакте): как VK вставляет данные в ClickHouse с десятков тысяч серверов - 1

Дополнительные материалы: использование Clickhouse в качестве замены ELK, Big Query и TimescaleDBЧитать полностью »

Clickhouse — это столбцовая система управления базами данных для онлайн обработки аналитических запросов (OLAP) с открытым исходным кодом, созданная Яндексом. Ее используют Яндекс, CloudFlare, VK.com, Badoo и другие сервисы по всему миру для хранения действительно больших объемов данных (вставка тысяч строк в секунду или петабайты данных, хранящихся на диске).

В обычной, «строковой» СУБД, примерами которых служат MySQL, Postgres, MS SQL Server, данные хранятся в таком порядке:

Использование Clickhouse в качестве замены ELK, Big Query и TimescaleDB - 1

При этом значения, относящиеся к одной строке, физически хранятся рядом. В столбцовых СУБД значения из разных столбцов хранятся отдельно, а данные одного столбца – вместе:

Использование Clickhouse в качестве замены ELK, Big Query и TimescaleDB - 2Читать полностью »

MONQ — мониторинг и AIOps родом из России - 1

В нашем блоге мы много говорили об иностранных решениях для мониторинга и аудита, и вот пришло время для отечественной разработки. MONQ — зонтичная система с коннекторами для распространённых систем мониторинга, ресурсно-сервисными моделями, анализом данных, высоким потенциалом к AI и особенной моделью лицензирования. Нам выдали дистрибутив на посмотреть и мы решили поделиться как оно там под капотом и всё ли так нанотехнологично как говорит вендор (проект, всё-таки, резидент Сколково). Честь потестить выпала мне и я тут расскажу про установку, возможности системы и немного про лицензирование. Прошу под кат.
Читать полностью »

В ClickHouse постоянно возникают задачи, связанные с обработкой строк. Например, поиск, вычисление свойств UTF-8 строк или что-то более экзотическое, будь то поиск типа учёта регистра или поиск по сжатым данным.

Всё началось с того, что руководитель разработки ClickHouse Лёша Миловидов o6CuFl2Q пришёл к нам на факультет компьютерных наук в НИУ ВШЭ и предложил огромное количество тем для курсовых и дипломов. Когда я увидел «Умные алгоритмы обработки строк в ClickHouse» (я, человек, который увлекается разными алгоритмами, в том числе экспериментальными), сразу же настроил планов, как сделаю самый крутой диплом. Мою радость и выражение лица можно описать следующей картинкой:

Умные алгоритмы обработки строк в ClickHouse - 1

Читать полностью »

Перевод статьи подготовлен специально для студентов курса «Data Engineer».


ClickHouse — это колоночная база данных с открытым исходным кодом. Это великолепная среда, где сотни аналитиков могут быстро запрашивать развернутые данные, даже когда вводятся десятки миллиардов новых записей в день. Расходы на инфраструктуру для поддержки такой системы могут достигать 100 тыс. долларов США в год, и потенциально вдвое меньше, в зависимости от использования. В какой-то момент инсталяция ClickHouse от Яндекс Метрики содержала 10 триллионов записей. Помимо Яндекса, ClickHouse также снискала успех у Bloomberg и Cloudflare.Читать полностью »

Как мы тестировали несколько баз данных временных рядов - 1

За последние несколько лет базы данных временных рядов (Time-series databases) превратились из диковинной штуки (узкоспециализированно применяющейся либо в открытых системах мониторинга (и привязанной к конкретным решениям), либо в Big Data проектах) в «товар народного потребления». На территории РФ отдельное спасибо за это надо сказать Яндексу и ClickHouse’у. До этого момента, если вам было необходимо сохранить большое количество time-series данных, приходилось либо смириться с необходимостью поднять монструозный Hadoop-стэк и сопровождать его, либо общаться с протоколами, индивидуальными для каждый системы.

Может показаться, что в 2019-м году статья про то, какую TSDB стоит использовать, будет состоять лишь из одного предложения: «просто используйте ClickHouse». Но… есть нюансы.

Действительно, ClickHouse активно развивается, пользовательская база растет, а поддержка ведется очень активно, но не стали ли мы заложниками успешной публичности ClickHouse-а, которая затмила другие, возможно, более эффективные/надежные решения?
В начале прошлого года мы занялись переработкой нашей собственной системы мониторинга, в процессе которой встал вопрос о выборе подходящей базы для хранения данных. Об истории этого выбора я и хочу здесь рассказать.
Читать полностью »

У нас был сервис на golang, отдельный топик kafka, clickhouse, gitlab-ci и падающий пайплайн, протухший ssh-ключ и вот это вот все, а еще сезон отпусков, жуткие ливни в городе, сломавшийся ноутбук, алерты по ночам, и горящий прод. Не то, чтобы это все было нужно для этой статьи, но раз показываешь типичные будни тестировщика, то иди в своем намерении до конца. Единственное, что меня беспокоило — это p0. В мире нет ничего более отчаянного, мрачного и подавленного, чем тестировщик, который пропустил это на прод. Но я знала, что довольно скоро я в это окунусь.
Читать полностью »

Что делать, если ваш запрос к базе выполняется недостаточно быстро? Как узнать, оптимально ли запрос использует вычислительные ресурсы или его можно ускорить? На последней конференции HighLoad++ в Москве я рассказал об интроспекции производительности запросов — и о том, что даёт СУБД ClickHouse, и о возможностях ОС, которые должны быть известны каждому.

Анализ производительности запросов в ClickHouse. Доклад Яндекса - 1

Каждый раз, когда я делаю запрос, меня волнует не только результат, но и то, что этот запрос делает. Например, он работает одну секунду. Много это или мало? Я всегда думаю: а почему не полсекунды? Потом что-нибудь оптимизирую, ускоряю, и он работает 10 мс. Обычно я доволен. Но все-таки я стараюсь в этом случае сделать недовольное выражение лица и спросить: «Почему не 5 мс?» Как можно выяснить, на что тратится время при обработке запроса? Можно ли его в принципе ускорить?

Читать полностью »

When you run queries in ClickHouse, you might notice that the profiler often shows the LZ_decompress_fast function near the top. What is going on? This question had us wondering how to choose the best compression algorithm.

ClickHouse stores data in compressed form. When running queries, ClickHouse tries to do as little as possible, in order to conserve CPU resources. In many cases, all the potentially time-consuming computations are already well optimized, plus the user wrote a well thought-out query. Then all that's left to do is to perform decompression.

How to speed up LZ4 decompression in ClickHouse? - 1

So why does LZ4 decompression becomes a bottleneck? LZ4 seems like an extremely light algorithm: the data decompression rate is usually from 1 to 3 GB/s per processor core, depending on the data. This is much faster than the typical disk subsystem. Moreover, we use all available CPU cores, and decompression scales linearly across all physical cores.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js