Рубрика «градиентный спуск» - 2

Предисловие

В этой статье речь пойдет о методах решения задач математической оптимизации, основанных на использовании градиента функции. Основная цель — собрать в статье все наиболее важные идеи, которые так или иначе связаны с этим методом и его всевозможными модификациями.
Читать полностью »

Обычная аналогия для объяснения градиентного спуска такая: человек застрял в горах во время сильного тумана и должен спуститься вниз. Самый логичный способ — осмотреть поверхность вокруг и медленно проложить путь, следуя вниз по склону.

Такова суть градиентного спуска, но аналогия всегда разваливается, когда мы переходим в многомерное пространство, фактическая геометрия которого нам мало известна. Хотя обычно это не становится проблемой, потому что градиентный спуск, кажется, работает вполне нормально.

Но вот важный вопрос: насколько хорошо градиентный спуск выполняется на реальной Земле?
Читать полностью »

TL;DR

  1. В глубоких нейронных сетях основным препятствием для обучения являются седловые точки, а не локальные минимумы, как считалось ранее.
  2. Большинство локальных минимумов целевой функции сконцентрированы в сравнительно небольшом подпространстве весов. Соответствующие этим минимумам сети дают примерно одинаковый loss на тестовом датасете.
  3. Сложность ландшафта увеличивается по приближении к глобальному минимуму. Почти во всём объёме пространства весов подавляющая часть седловых точек имеет большое количество направлений, по которым из них можно сбежать. Чем ближе к центру кластера минимумов, тем меньше «направлений побега» у встреченных на пути седловых точек.
  4. Всё ещё неясно, как найти в подпространстве минимумов глобальный экстремум. Похоже, что это очень сложно; и не факт, что типичный глобальный минимум намного лучше типичного локального.
  5. В сгустке минимумов существуют особые кривые, соединяющие локальные минимумы. Функция потерь на этих кривых принимает лишь чуть большие значения, чем в самих минимумах.
  6. Некоторые исследователи считают, что широкие минимумы (с большим радиусом «ямы» вокруг) лучше узких. Но есть и немало учёных, которые полагают, что связь ширины минимума с обобщающей способностью сети очень слаба.
  7. Skip connections делают ландшафт более дружелюбным для градиентного спуска. Похоже, что вообще нет причин не использовать residual learning.
  8. Чем шире слои в сети и чем их меньше (до определённого предела), тем глаже ландшафт целевой функции. Увы, чем более избыточна параметризация сети, тем больше нейросеть подвержена переобучению.

Всё, листайте дальше. Я даже КДПВ ставить не буду.
Читать полностью »

image

Мы часто слышим такие словесные конструкции, как «машинное обучение», «нейронные сети». Эти выражения уже плотно вошли в общественное сознание и чаще всего ассоциируются с распознаванием образов и речи, с генерацией человекоподобного текста. На самом деле алгоритмы машинного обучения могут решать множество различных типов задач, в том числе помогать малому бизнесу, интернет-изданию, да чему угодно. В этой статье я расскажу как создать нейросеть, которая способна решить реальную бизнес-задачу по созданию скоринговой модели. Мы рассмотрим все этапы: от подготовки данных до создания модели и оценки ее качества.

Вопросы, которые разобраны в статье:
• Как собрать и подготовить данные для построения модели?
• Что такое нейронная сеть и как она устроена?
• Как написать свою нейронную сеть с нуля?
• Как правильно обучить нейронную сеть на имеющихся данных?
• Как интерпретировать модель и ее результаты?
• Как корректно оценить качество модели?
Читать полностью »

Ограничения глубинного обучения и будущее - 1Эта статья представляет собой адаптацию разделов 2 и 3 из главы 9 моей книги «Глубинное обучение с Python» (Manning Publications).

Статья рассчитана на людей, у которых уже есть значительный опыт работы с глубинным обучением (например, тех, кто уже прочитал главы 1-8 этой книги). Предполагается наличие большого количества знаний.


Ограничения глубинного обучения

Глубинное обучение: геометрический вид

Самая удивительная вещь в глубинном обучении — то, насколько оно простое. Десять лет назад никто не мог представить, каких потрясающих результатов мы достигнем в проблемах машинного восприятия, используя простые параметрические модели, обученные с градиентным спуском. Теперь выходит, что нужны всего лишь достаточно большие параметрические модели, обученные на достаточно большом количестве образцов. Как сказал однажды Фейнман о Вселенной: «Она не сложная, её просто много».
Читать полностью »

Введение в процедурную анимацию: инверсная кинематика - 1

Часть 4. Введение в градиентный спуск

Эта часть представляет собой теоретическое введение в инверсную кинематику и содержит программное решение, основанное на градиентном спуске (gradient descent). Эта статья не будет всеобъемлющим руководством по этой теме, это всего лишь общее введение. В следующей части мы покажем настоящую реализацию этого алгоритма на C# в Unity.

Серия состоит из следующих частей (части 1-3 представлены в предыдущем посте):

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js