Рубрика «искусственный интеллект» - 349

Роль морфологии в компьютерной лингвистике

Содержание цикла статей про морфологию

Морфология и компьютерная лингвистика для самых маленьких
Роль морфологии в компьютерной лингвистике
• Морфология. Задачи и подходы к их решению
• Псевдолемматизация, композиты и прочие странные словечки

Раньше автоматический перевод работал следующим образом:

  1. Анализировал формы слов в исходном предложении;
  2. Пытался подобрать одну из синтаксических схем исходного языка, в которую подошло бы предложение с найденными формами;
  3. Находил соответствующую синтаксическую схему для целевого языка;
  4. Находил перевод для каждой из словоформ в исходном предложении;
  5. Слова-переводы ставил в форму, необходимую для целевой синтаксической схемы.

Современные технологии пытаются пойти дальше. Читать полностью »

В четвёртой серии цикла о графических вероятностных моделях (часть 1, часть 2, часть 3) мы продолжим разговор о том, как справляться со сложными фактор-графами. В прошлый раз мы изучили алгоритм передачи сообщений, который, правда, работает только в тех случаях, когда фактор-граф представляет собой дерево, и в каждом узле можно без проблем пересчитать распределения грубой силой. Что делать в по-настоящему интересных случаях, когда в графе есть большие содержательные циклы, мы начнём обсуждать сегодня – поговорим о паре относительно простых методов и обсудим очень мощный, но непростой в использовании инструмент – вариационные приближения.

Вероятностные модели: борьба с циклами и вариационные приближения
Читать полностью »

Решение задачи кластеризации методом градиентного спускаПривет. В этой статье будет рассмотрен способ кластеризации данных, используя метод градиентного спуска. Честно говоря данный способ носит больше академический характер, нежели практический. Реализация этого метода мне понадобилась в демонстрационных целях для курса по машинному обучению, что бы показать как одинаковые задачи можно решить различными способами. Хотя конечно если вы планируете осуществить кластеризацию данных, используя дифференцируемую метрику, для которой вычислительно труднее найти центроид, нежели подсчитать градиент на некотором наборе данных, то этот метод может быть полезным. Итак если вам интересно как можно решить задачу k-means кластеризации с обобщенной метрикой используя метод градиентного спуска, прошу под кат. Код на языке R.

Читать полностью »

Этот пост №2, является логическим продолжение предыдущего поста Предыдущий пост №1

Еще в 2006 году был предложен метод постепенного (возрастающего) обучения, названый самоорганизующейся возрастающей нейронной сетью (SOINN), для того, чтобы попытаться осуществить неконтролируемое обучение (самообучение без учителя). SOINN хорошо справляется с обработкой нестационарных данных в режиме онлайн, сообщает о числе определенных кластеров и представляет топологическую структуру входных данных с учетом вероятности плотности вероятности распределения. Hasagawa, предложивший вариант сети SOINN, сравнивал результаты работы своей сети с GNG сетью (расширяющегося нейронного газа) и результат сети SOINN получался лучше чем у GNG.

С сетью SOINN была такие проблемы:
1. В связи с тем что она состояла из двух обрабатывающих слоев, что пользователь должен был принимать участие в работе сети. Пользователь должен был решить, когда остановить обучение первого слоя и когда начать приобретение знаний во втором слое.
2. Если группы имеют высокую плотность, то сеть хорошо справлялась с их распознаванием, но если сеть группы частично перекрывались, то сеть думала что это одна группа и объединяла их вместе.

Для решения этих проблем и упрощения архитектуры сети была предложена сеть на основе SOINN с увеличенной самоорганизацией и получила название ESOINN.
Читать полностью »

Предыдущий пост

Еще в 2006 году был предложен метод постепенного (возрастающего) обучения, названый самоорганизующейся возрастающей нейронной сетью (SOINN), для того, чтобы попытаться осуществить неконтролируемое обучение (самообучение без учителя). SOINN хорошо справляется с обработкой нестационарных данных в режиме онлайн, сообщает о числе определенных кластеров и представляет топологическую структуру входных данных с учетом вероятности плотности вероятности распределения. Hasagawa, предложивший вариант сети SOINN, сравнивал результаты работы своей сети с GNG сетью (расширяющегося нейронного газа) и результат сети SOINN получался лучше чем у GNG.

С сетью SOINN была такие проблемы:
1. В связи с тем что она состояла из двух обрабатывающих слоев, что пользователь должен был принимать участие в работе сети. Пользователь должен был решить, когда остановить обучение первого слоя и когда начать приобретение знаний во втором слое.
2. Если группы имеют высокую плотность, то сеть хорошо справлялась с их распознаванием, но если сеть группы частично перекрывались, то сеть думала что это одна группа и объединяла их вместе.

Для решения этих проблем и упрощения архитектуры сети была предложена сеть на основе SOINN с увеличенной самоорганизацией и получила название ESOINN.
Читать полностью »

робот SOINN
SOINN – это самоорганизующаяся инкрементная нейронная сеть. Структура и алгоритм такой нейронной сети повидимому хорошо себя зарекомендовал в японской лаборатории Hasegawa (сайт — haselab.info), потому что он в итоге был взят за основу и дальнейшее развитие алгоритмов искусственного интеллекта шло путем небольших модификаций и надстроек к сети SOINN.

Базовая сеть SOINN состоит из двух слоев. Сеть получает входной вектор и на первом слое после обучения создает узел (нейрон) – определяющий класс для входных данных. Если входной вектор похож на существующий класс, мера похожести определяется настройками алгоритма обучения, то два самых похожих нейроны первого слоя объединяются связью, либо если входной вектор не похож не на один существующей класс, то в первом слое создается новый нейрон, определяющий текущий класс. Очень похожие нейроны первого слоя, объединенные связью, определяются как один класс. Первых слой является входным слоем для второго слоя, и по аналогичному алгоритму, с небольшим исключением, создаются классы во втором слое.

На основе SOINN созданы такие сети, как (далее представлены название сети и описание сети от ее создателей):
Читать полностью »

Морфология и компьютерная лингвистика для самых маленьких На Хабре уже был пост о Технопарке, и даже рассказы о курсах (1, 2), которые в нем проходят. Сегодня мы публикуем первую часть мастер-класса, который для студентов Технопарка провел Андрей Андрианов из ABBYY.

В цикле будет 4 поста

Морфология и компьютерная лингвистика для самых маленьких
• Роль морфологии в компьютерной лингвистике
• Морфология. Задачи и подходы к их решению
• Псевдолемматизация, композиты и прочие странные словечки

Для начала не лишним будет вспомнить, что такое морфология, а также какое отношение она имеет к лингвистике. За этим предлагаю пройти под кат к содержимому первого поста серии.
Читать полностью »

Компьютерное зрение помогает искать потерявшихся собакПо статистике, только 15% потерявшихся собак возвращаются домой благодаря тому, что их хозяева не поленились имплантировать собаке чип RFID с контактной информацией или нанести эту информацию на ошейник. Остальных животных если и удаётся опознать, то только по фотографии или словесному описанию. Компания Finding rover из Сан-Франциско создала бесплатное мобильное приложение, которое использует технологию распознавания лиц, чтобы увеличить шансы найти пропавшего питомца.
Читать полностью »

Знаете ли Вы, как именно Вы что-то знаете? Никто не знает!

Хочу раскрыть Вам несколько секретов естественного интеллекта, а заодно рассказать о том, как проектирую интеллект искусственный.

Небольшой дисклеймер. В статье будут описаны весьма амбициозные идеи. Большинство из представленных идей можно развернуть в самостоятельные циклы статей. Поэтому здесь представлены идеи лишь для первичного ознакомления. Я не питаю иллюзий, что будет много тех, кто схватит идею слету. Поэтому вопросы приветствуются, буду стараться разъяснять. И да, я знаю, что это все очень похоже на миллион других идей, алгоритмов и т. п. Разница лишь в том, что эта конструкция идей претендует на совершенно полную симуляцию работы естественного интеллекта во всех аспектах, которые Вы можете или не можете вообразить. Без черных дыр, неосмысленных проблем или неизвестных технических решений.

Да, это все о наиболее полном и сильном искусственном интеллекте. Предчувствую жадность некоторых исследователей и пренебрежение некоторых коллекционеров идей. Но все же, теперь, после предупреждения, приступим. Информации будет много и плотность ее очень высока, так что — держитесь за что-нибудь покрепче. Может быть придется перечитывать десятки раз и задавать тысячи вопросов. Я готов на них отвечать, поскольку одиночные исследования пора выводить на более практический уровень, требующий привлечения нескольких сотен специалистов.

Для начала, давайте посмотрим, как работает ум, когда что-то узнает. Казалось бы, мы так быстро ориентируемся в обстановке, достаточно несколько мгновений, чтобы узнать, какие предметы нам видны, как они расположены, какое у них поведение. Из-за этой иллюзии складывается впечатление, что мозг работает очень-очень быстро.

Почему же это иллюзия? Попробую объяснить.

Представьте, что Вы неожиданно попали в очень малознакомую ситуацию. Туда, где никогда не были. Например, в джунгли, или наоборот, в пустыню. А может быть это будет просто густой клочковатый туман? Или Вы видите чужое звездное небо.

Что происходит? Что различает ум? Ему не на что опереться. Приходится классифицировать обстановочку медленно и тягостно. Выискивать опорные кластеры признаков, чтобы ориентироваться относительно их.

Знаете ли Вы, что видит новорожденный? Хаотическое движение цветных пятен без содержания и смысла. Но кое-что он слышит, что позволяет ему начать ориентироваться. Он слышит ставший привычным голос матери. Он уже привык осязать ее тело, теплое, ароматное, дающее вкусное молоко.

Процесс осмысления закладывается начиная с формирования органов чувств.

Когда ум оказывается в незнакомой ситуации, он не понимает ее. Ему не на что опереться. Нет чего-то, что он уже может предсказать.
И он начинает последовательную и глубокую классификацию ситуации
Читать полностью »

Учёные разрабатывают робота ищейку для пожарныхИсследователи из Калифорнийского университета в Сан-Диего разработали прототип двухколёсного робота для разведки и поиска людей во время пожара. Предполагается, что робот будет недорогим, быстрым и простым в использовании, кроме того, подобно своре опытных охотничьих собак, несколько роботов смогут совместно обследовать горящее здание, за считанные минуты составляя трёхмерную карту помещений и обнаруживая людей, заблокированных в здании пожаром.

Робот напоминает электросамокат Сигвей, но в отличие от него умеет преодолевать ступеньки и довольно высокие препятствия. Это достигается простым и элегантным инженерным решением: “туловище” робота представляет собой плоскую доску, которая может двигаться вверх и вниз относительно шасси. Выдвигаясь, нижний конец этой доски поднимает шасси робота в воздух, причём, чтобы удержать равновесие, робот балансирует колёсами, используя их как силовые гироскопы. Как только колёса поднимаются на нужную высоту, робот опирается ими о препятствие и подтягивает “туловище” вверх.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js