Рубрика «greenplum»

Привет! Меня зовут Влад, я DWH-инженер в Циан. Занимаюсь проектированием витрин и пайплайнов для доставки данных в корпоративное хранилище. В этой статье хочу поделиться опытом применения методологии Data Vault на Greenplum.

Data Vault часто упоминают рядом с Kimball и Inmon, но практических материалов по его внедрению заметно меньше. Для инженеров, которые только начинают строить DWH или думают о переходе на Data Vault, я собрал практический разбор: на каких задачах методология действительно помогает, с какими трудностями можно столкнуться и как это выглядит в реальном проекте.

Введение

GreenplumЧитать полностью »

Введение: Инновационный путь, объединяющий озера данных и хранилища

В эпоху цифровых финансов данные стали ключевой компетенцией финансовых учреждений. Bank of Hangzhou Consumer Finance, являясь лицензированной организацией потребительского финансирования, всегда сохраняла сильный дух технологических инноваций, занимая второе место в отрасли по количеству патентов. Столкнувшись с вызовами, связанными с быстрым ростом бизнеса, компания начала трансформацию своей инфраструктуры данных, кульминацией которой стало создание платформы GLH Lakehouse на базе Mirrorship.

Читать полностью »

Привет!

Всем хорош Data Vault, однако схватиться с ним «врукопашную», используя только SQL, захочет не каждый. Останавливает большой объем ручных операций, а также большой объем деталей реализации. Большое количество join, за которые критикуют Data Vault, не является определяющим моментом, так как уже сейчас базы данных способны их эффективно обрабатывать, а с течением времени мощность серверов только возрастает.

Но творческая мысль не дремлет, постепенно появляются инструменты для автоматизации построения Data Vault. Например, это пакет AutomateDV для dbtЧитать полностью »

На фото двухлетней давности — только половина нашей сегодняшней команды

На фото двухлетней давности — только половина нашей сегодняшней команды

Читать полностью »

Массивно-параллельная база данных Greenplum — короткий ликбез - 1

Для Hadoop и Greenplum есть возможность получить готовый SaaS. И если Хадуп — известная штука, то Greenplum (он лежит в основе продукта АrenadataDB, про который далее пойдёт речь) — интересная, но уже менее «на слуху».

Arenadata DB — это распределённая СУБД на базе опенсорсного Greenplum. Как и у других решений MPP (параллельной обработки данных), для массивно-параллельных систем архитектура облака далека от оптимальной. Это может снижать производительность аж до 30 % (обычно меньше). Но, тем не менее, эту проблему можно нивелировать (о чём речь пойдёт ниже). Кроме того, стоит покупать такую услугу из облака, часто это удобно и выгодно в сравнении с развёртыванием собственного кластера.

В гайдах явно указывается on-premise, но сейчас многие осознают масштаб удобства облака. Все понимают, что некая деградация производительности будет, но это настолько всё равно супер по удобству и скорости, что уже есть проекты, где этим жертвуют на каких-то этапах вроде проверки гипотез.

Если у вас есть хранилище данных больше 1 ТБ и транзакционные системы — не ваш профиль по нагрузке, то ниже — рассказ, что можно сделать как вариант. Почему 1 ТБ? Начиная с этого объёма использование MPP эффективнее по соотношению производительность/стоимость, если сравнивать с классическими СУБД. Читать полностью »

5 лайфхаков оптимизации SQL-запросов в Greenplum - 1

Любые процессы, связанные с базой, рано или поздно сталкиваются с проблемами производительности запросов к этой базе.

Хранилище данных Ростелекома построено на Greenplum, большая часть вычислений (transform) производится sql-запросами, которые запускает (либо генерирует и запускает) ETL-механизм. СУБД имеет свои нюансы, существенно влияющие на производительность. Данная статья — попытка выделить наиболее критичные, с точки зрения производительности, аспекты работы с Greenplum и поделиться опытом.

В двух словах о Greenplum

Greenplum — MPP сервер БД, ядро которого построено на PostgreSql.

Представляет собой несколько разных экземпляров процесса PostgreSql (инстансы). Один из них является точкой входа для клиента и называется master instance (master), все остальные — Segment instanсe (segment, Независимые инстансы, на каждом из которых хранится своя порция данных). На каждом сервере (segment host) может быть запущено от одного до нескольких сервисов (segment). Делается это для того, чтобы лучше утилизировать ресурсы серверов и в первую очередь процессоры. Мастер хранит метаданные, отвечает за связь клиентов с данными, а также распределяет работу между сегментами.

5 лайфхаков оптимизации SQL-запросов в Greenplum - 2

Подробнее можно почитать в официальной документации.

Далее в статье будет много отсылок к плану запроса. Информацию для Greenplum можно получить тут.

Как писать хорошие запросы на Greenplum (ну или хотя бы не совсем печальные)

Читать полностью »

Друзья, конференция PG Day'17 Russia, которую мы проводим уже в четвертый раз в Санкт-Петербурге, состоится совсем скоро, 5-7 июля. С каждым годом мы растем и расширяемся. В этом году мы сделали событие, посвященное базам данных в широком смысле этого слова.

Неделю назад было опубликовано полное расписание конференции. Мероприятие ожидается очень насыщенным: учебный день, включающий себя 11 мастер-классов; Greenplum Day — бесплатное мероприятие, посвященное одноименной аналитической платформе, от наших партнеров Dell/EMC и Pivotal; два дня докладов — свыше 60 выступлений в шести секциях.

В преддверии конференции совместно с hydrobiont мы составили для вас подборку самых ярких и запоминающихся выступлений.
Читать полностью »

Сравнение аналитических in-memory баз данных - 1

В последние два месяца лета в управлении хранилищ данных (Data Warehouse, DWH) Тинькофф Банка появилась новая тема для кухонных споров.
Всё это время мы проводили масштабное тестирование нескольких in-memory СУБД. Любой разговор с администраторами DWH в это время можно было начать с фразы «Ну как, кто лидирует?», и не прогадать. В ответ люди получали длинную и очень эмоциональную тираду о сложностях тестирования, премудростях общения с доселе неизвестными вендорами и недостатках отдельных испытуемых.
Подробности, результаты и некое подобие выводов из тестирования — под катом.
Читать полностью »

Наверно, в мире данных нет подобного феномена настолько неоднозначного понимания того, что же такое Hadoop. Ни один подобный продукт не окутан таким большим количеством мифов, легенд, а главное непонимания со стороны пользователей. Не менее загадочным и противоречивым является термин "Big Data", который иногда хочется писать желтым шрифтом(спасибо маркетологам), а произносить с особым пафосом. Об этих двух понятиях — Hadoop и Big Data я бы хотел поделиться с сообществом, а возможно и развести небольшой холивар.
Возможно статья кого-то обидит, кого-то улыбнет, но я надеюсь, что не оставит никого равнодушным.

image
Демонстрация Hadoop пользователям

Читать полностью »

В этой статье я хочу рассказать про важную задачу, о которой нужно думать и нужно уметь решать, если в аналитической платформе для работы с данными появляется такой важный компонент как Hadoop — задача интеграции данных Hadoop и данных корпоративного DWH. В Data Lake в Тинькофф Банке мы научились эффективно решать эту задачу и дальше в статье я расскажу, как мы это сделали.

Data Lake – от теории к практике. Методы интеграции данных Hadoop и корпоративного DWH - 1

Данная статья является продолжением цикла статей про Data Lake в Тинькофф Банке (предыдущая статья Data Lake – от теории к практике. Сказ про то, как мы строим ETL на Hadoop).

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js