Рубрика «Вселенная» - 10

image

На изображении ранней Вселенной, полученном с телескопа Планка, видна странная закономерность: температурные флуктуации в части неба справа от серой линии сильнее, чем в его части с левой стороны от линии

Если наша вселенная врезалась в соседнюю в момент своего резкого роста в первую секунду существования, то такое столкновение оставило бы след. И Мэтью Клебан считает, что он наблюдает именно такой след в самом детальном из существующих снимков зари Вселенной. Изображение со спутника подтверждает вывод, сделанный из предыдущей фотографии: одна половина молодого космоса была более крупнозернистой, чем другая.

Поскольку другой информации о том, что происходило в первые моменты существования Вселенной, довольно мало, Клебан вместе с десятками космологов-теоретиков пытается собрать воедино историю происхождения космоса на основе новой зернистой подсказки.
Читать полностью »

image

Слово «мультивселенная» используют многие люди, но не все подразумевают под ним одно и то же понятие. Читатель Крис Олсон спрашивает о двух разных значениях этого слова:

Каким образом идеи Эверетта о квантовой механике и вечная инфляция связаны друг с другом, если они вообще связаны? Можно ли провести различия между мультивселенными, о которых говорят эти идеи?

Существует множество вариантов, которые люди могут иметь в виду, употребляя термин «мультивселенная» вместо «Вселенная», поэтому давайте пройдёмся по ним, начиная с идей, требующих меньше всего новых предположений, и заканчивая самыми умозрительными.

1) Вселенная за пределами нашего поля зрения. Говоря «Вселенная», мы часто подразумеваем её наблюдаемую часть. Поскольку известная нам Вселенная началась с события, которое мы знаем, как горячий Большой взрыв – когда горячая, плотная Вселенная, наполненная веществом и излучением, впервые появилась 13,8 млрд лет назад и начала расширяться, охлаждаться и собираться в комочки под воздействием гравитации – мы ограничены тем, что можем наблюдать. Даже сигналы, появившиеся в тот же момент, и беспрепятственно путешествовавшие со скоростью света в постоянно расширяющейся Вселенной, способны были пройти с тех пор лишь конечное расстояние. В нашей Вселенной, где есть нормальная материя, тёмная материя, тёмная энергия, нейтрино, излучение и всё то, что нам ещё известно, это расстояние равно 46,1 млрд световых лет с центром в точке нашего пребывания.
Читать полностью »

image

Червоточины. Межгалактические возможности срезать путь. Туннель через пространство-время, позволяющий отважным путешественникам скакать между звёздными системами, даже не приближаясь к скорости света.

Червоточины – рабочая лошадка научно-фантастических межзвёздных цивилизаций в книгах и кино, поскольку они решают надоедливую проблему художественного произведения: «если придерживаться физики, то 99,999999% всей нашей истории будет такой же интересной, как наблюдение за спящими людьми».

Но можно ли сделать это? Реально свернуть и согнуть пространство-время, создать удобный туннель и реализовать все наши галактические мечты?

Коротко говоря: маловероятно.
Подробнее: под катом.
Читать полностью »

image
Слева — нейроны и их связи в мозге; справа — компьютерная симуляция крупномасштабных структур Вселенной

Вы уже встречали такие аналогии: как атомы похожи на солнечные системы, как крупномасштабные структуры Вселенной напоминают нейроны в мозгу человека, и про странные совпадения количества звёзд в галактике, галактик во Вселенной, атомов в клетке и клеток в живом организме – все эти числа укладываются в диапазон от 1011 до 1014. Возникает вопрос, как он возник и у нашего читателя Майка Пола Хьюза:

Можем ли мы быть клетками мозга более крупного существа, в планетарном масштабе, которому ещё только предстоит осознать себя? Как бы мы узнали об этом? Как это можно было бы проверить?

Хотите – верьте, хотите – нет, но идея того, что вся Вселенная на самом деле – это некое разумное существо, существует уже очень долгое время, и во вселенной Марвел даже есть концепция подобного существа: персонаж Вечность.
Читать полностью »

Отвечая на вопросы о параллельных мирах, физикам необходимо аккуратно различать интерпретации этой идеи. В инфляционной космологии есть идея «мультивселенной», в квантовой механике – «множественность миров» или «ветви волновой функции», в теории струн – «параллельные браны». Но в последнее время люди всё чаще задумываются о том, не могут ли первые две идеи исходить из одной основной. (Браны, с моей точки зрения, всё-таки совершенно отдельное понятие).

На первый взгляд, это безумие – или, по крайней мере, мне так сначала показалось. Когда космологи рассуждают о мультивселенной, они используют отчасти поэтический термин. На самом деле имеются в виду разные регионы пространства-времени, находящиеся так далеко, что мы не можем их наблюдать, но всё же принадлежащие тому, что мы хотели бы называть «вселенной». В инфляционной космологии эти отдалённые регионы могут быть относительно самодостаточными – как называет их Алан Гут, «карманными вселенными». Если скомбинировать это с теорией струн, то появляющиеся локальные законы физики у разных карманных вселенных могут быть очень разными. У них могут появиться разные частицы, разные силы и даже другое число измерений. Поэтому их вполне разумно считать отдельными вселенными, даже если все они – часть одного и того же пространства-времени.
Читать полностью »

Массивная черная дыра за 10 лет полностью «съела» соседнюю звезду - 1

Ученые из НАСА на днях опубликовали информацию о массивной черной дыре, которая постепенно «откусывает по кусочку» от соседней звезды. Это самый долгий срок наблюдений за подобным процессом за всю историю астрономии. Исследователи обнаружили черную звезду при помощи космической рентгеновской обсерватории «Чандра», спутника Swift и XMM-Newton.

Когда крупные объекты вроде звезд приближаются к черной дыре слишком близко, та может буквально разорвать звезду на части вследствие события приливного горизонта. Как только светило попадает в гравитационное поле черной дыры, та начинает потихоньку вбирать в себя вещество звезды, отбрасывая часть материи, причем этот процесс может продолжаться долго — десятки лет.
Читать полностью »

image

Одно из самых неожиданных предсказаний Общей теории относительности Эйнштейна – существование не только материи, излучения и других форм энергии, основанных на частицах, но также существование и самого по себе гравитационного излучения, фундаментальной «ряби» на ткани пространства-времени. Это одна из самых сложных для понимания концепций, и наш читатель хочет узнать больше на эту тему:

Гравитационные волны – это возмущения пространства-времени, путешествующие со скоростью с. Однако пространство-время может расширяться и сокращаться быстрее с. Но расширение, за которым следует сокращение, это, по сути, и есть определение компрессионной волны. Получается вроде бы парадокс: гравитационные волны перемещаются со скоростью с, но для них вроде бы существует возможность сверхсветового перемещения. Как его разрешить?

Для начала начнём с концепции этого излучения, и как оно появляется.
Читать полностью »

Если концепция мультивселенной кажется странной, так это потому, что нам нужно поменять наши представления о времени и пространстве

image

Название изображения, «Гравюра Фламмариона», может быть неизвестным для вас, но вы, скорее всего, много раз его видели. На нём изображён пилигрим в плаще и с посохом. За ним – ландшафт из городов и деревьев. Его окружает кристальная оболочка, испещрённая бесчисленными звёздами. Он достиг края мира, проник на другую его сторону и поражённо взирает на новый мир света, радуг и огня.

Впервые изображение было опубликовано в книге 1888 года французского астронома XIX века Камиля Фламмариона «Атмосфера: Популярная Метеорология». Изначально она была чёрно-белой, хотя сейчас можно встретить и раскрашенные версии. Он отмечает, что небеса действительно выглядят, как купол, на котором закреплены небесные тела, но впечатления обманчивы. «Наши предки, – пишет Фламмарион, – представляли себе, что этот голубой свод и есть такой, каким его видят их глаза. Но, как писал Вольтер, это так же осмысленно, как шелкопряд, прядущий свою сеть до пределов вселенной».
Читать полностью »

По окончанию постройки трёх гигантских телескопов они могут полностью поменять современную астрофизику

image
Компьютерное изображение "Гигантского Магелланова телескопа", одного из трёх «экстремально больших телескопов», окончание постройки которых ожидается в течение ближайших 10 лет. Они будут достаточно крупными для того, чтобы рассмотреть первые объекты Вселенной.

Самые старые и бережно хранимые секреты Вселенной, от тёмной материи до формы Вселенной сразу после Большого взрыва, могут быть скоро раскрыты – ведь сейчас идёт строительство трёх «экстремально больших телескопов», размах зеркал каждого из которых превысит размер баскетбольной площадки.

Учёные надеются, что эти телескопы, окончание строительства которых ожидается в ближайшие десять лет, помогут им рассмотреть раннюю Вселенную, переходящую из однородного, горячего и непрозрачного состояния в холодное и структурированное, в котором материя начинает концентрироваться внутри объектов, и освобождает свет, отправляя его в путешествие по космосу.
Читать полностью »

1 января 1925 года: день, когда мы открыли Вселенную - 1
Туманность Андромеды, сфотографированная в Йеркской обсерватории около 1900 года. Для нас это очевидно галактика. Тогда её описали, как «массу светящегося газа» непонятного происхождения.

И что же особенного в этой дате? Новый год – просто случайное перелистывание календаря, но он может служить и моментом возвышения, обновления и пересмотра представлений. Так случилось и с одной из самых необычных дат в истории науки, 1 января 1925 года. Можно сказать, что тогда не случилось ничего примечательного, всего лишь обычный доклад на научной конференции. Или же его можно праздновать, как день рождения современной космологии момент, когда человечество открыло Вселенную, как она есть.

До того у астрономов был близорукий и ограниченный взгляд на реальность. Как это часто случается даже с самыми гениальными умами, они видели, но не понимали, на что смотрят. А ведь ключевой факт был прямо у них перед глазами. По всему небу были разбросанные интересные спиральные туманности, водовороты света, напоминавшие волчки. Самый известный из них, туманность Андромеды, был таким ярким, что его легко можно было увидеть ночью. Но значение этих вездесущих объектов оставалось загадкой.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js