Рубрика «аналоговые вычисления»

Введение

Это не очень серьёзная статья.

Пусть даже не серьёзная.

Библиографического списка в конце не будет. И списка литературы, наверное, тоже...

Я позволю себе написать обычную статью, а не научную уровня журнала nature. Извините...

Это моя вторая статья на данном ресурсе на тему праздных рассуждений. Рассуждение в этой статье - по-прежнему офф-топ моей основной деятельности, но да-да "надо быть разносторонним". Тем не менее, физика для меня гораздо ближе экономики, политики и истории, так что должно получиться лучше.

Читать полностью »

Антикитерский механизм раскрывает свои новые секреты - 1

В 1900 году водолаз Элиас Стадиатис, облачённый в медно-латунный шлем и брезентовый костюм, появился из моря, трясясь от страха и бормоча о «куче мёртвых голых людей». Элиас был одним из греческих водолазов с острова Сими в восточной части Средиземного моря, собиравших морских губок. Они спрятались от жестокой бури рядом с крошечным островом Антикитерой, расположенным между Критом и материковой Грецией. Когда буря утихла, они продолжили нырять за губками и случайно наткнулись на обломки кораблекрушения со множеством древнегреческих сокровищ, которые и до сих пор остаются самыми крупными из найденных подводных останков древнего мира. «Мёртвые голые люди» оказались мраморными статуями, раскиданными по морскому дну вместе со множеством других артефактов. Вскоре после этого их открытие стало причиной первых крупных подводных археологических раскопок в истории.

Один из объектов, обнаруженный на месте раскопок, кусок размером с крупный словарь, изначально оставался незамеченным на фоне более удивительных находок. Однако несколько месяцев спустя Национальный археологический музей в Афинах вскрыл глыбу, скрывавшую внутри себя бронзовые точные шестерни размером с монету. Согласно историческим знаниям начала 20-го века, подобные шестерни не могли появиться в Древней Греции, да и ни в какой иной точке мира, ещё многие века после кораблекрушения. Находка породила ожесточённые споры.
Читать полностью »

Использовать архитектуру фон Неймана для приложений с искусственным интеллектом неэффективно. Что придёт ей на смену?

Использовать существующие архитектуры для решения задач машинного обучения (МО) и искусственного интеллекта (ИИ) стало непрактично. Энергия, потребляемая ИИ, значительно выросла, и CPU вместе с GPU всё больше кажутся неподходящими инструментами для этой работы.

Участники нескольких симпозиумов согласились с тем, что наилучшие возможности для значительных перемен возникают при отсутствии унаследованных особенностей, которые приходится тащить за собой. Большая часть систем со временем развивалась постепенно – и, пускай это обеспечивает безопасное продвижение вперёд, такая схема не даёт оптимальных решений. Когда появляется что-то новое, возникает возможность взглянуть на вещи свежим взглядом и выбрать лучшее направление, чем то, что предложат общепринятые технологии. Именно это обсуждали на недавней конференции, где изучался вопрос, является ли комплементарная структура металл-оксид-полупроводник (CMOS) наилучшей базовой технологией, на которой стоит строить ИИ-приложения.
Читать полностью »

Учёные и инженеры могут с выгодой использовать давно заброшенный подход к вычислениям

Современный вариант развития старых аналоговых компьютеров - 1
Этот аналоговый механический компьютер использовался для прогноза приливов. Он был известен, как «старый латунный мозг», или, более официально, «Машина предсказания приливов №2». Она служила Прибрежной и геологической службе США для подсчёта таблиц приливов начиная с 1912 года, и не уходила на пенсию вплоть до 1965, когда её заменили электронным компьютером.

Когда Нил Армстронг и Базз Олдрин опустились на Луну в 1969 году в рамках миссии Аполло-11, это, вероятно, было величайшим достижением в инженерной истории человечества [не считая, конечно, запуска первого спутника и первого человека в космос, первого выхода человека в открытый космос, а также создания автоматического космического корабля многоразового использования / прим. перев.]. Многие люди не отдают себе отчёта в том, что важным ингредиентом в успехе миссий Аполло и их предшественников были аналоговые и гибридные (аналогово-цифровые) компьютеры, которые НАСА использовала для симуляций, а в некоторых случаях, даже для управления полётами. Многие из живущих сегодня людей даже не слышали об аналоговых компьютерах, считая, что компьютеры, по определению, являются цифровыми устройствами.
Читать полностью »

Этот пост написан по мотивам лекции Джеймса Смита, профессора Висконсинского университета в Мадисоне, специализирующегося в микроэлектронике и архитектуре вычислительных машин.

История компьютерных наук в целом сводится к тому, что учёные пытаются понять, как работает человеческий мозг, и воссоздать нечто аналогичное по своим возможностям. Как именно учёные его исследуют? Представим, что в XXI веке на Землю прилетают инопланетяне, никогда не видевшие привычных нам компьютеров, и пытаются исследовать устройство такого компьютера. Скорее всего, они начнут с измерения напряжений на проводниках, и обнаружат, что данные передаются в двоичном виде: точное значение напряжения не важно, важно только его наличие либо отсутствие. Затем, возможно, они поймут, что все электронные схемы составлены из одинаковых «логических вентилей», у которых есть вход и выход, и сигнал внутри схемы всегда передаётся в одном направлении. Если инопланетяне достаточно сообразительные, то они смогут разобраться, как работают комбинационные схемы — одних их достаточно, чтобы построить сравнительно сложные вычислительные устройства. Может быть, инопланетяне разгадают роль тактового сигнала и обратной связи; но вряд ли они смогут, изучая современный процессор, распознать в нём фон-неймановскую архитектуру с общей памятью, счётчиком команд, набором регистров и т.п. Дело в том, что по итогам сорока лет погони за производительностью в процессорах появилась целая иерархия «памятей» с хитроумными протоколами синхронизации между ними; несколько параллельных конвейеров, снабжённых предсказателями переходов, так что понятие «счётчика команд» фактически теряет смысл; с каждой командой связано собственное содержимое регистров, и т.д. Для реализации микропроцессора достаточно нескольких тысяч транзисторов; чтобы его производительность достигла привычного нам уровня, требуются сотни миллионов. Смысл этого примера в том, что для ответа на вопрос «как работает компьютер?» не нужно разбираться в работе сотен миллионов транзисторов: они лишь заслоняют собой простую идею, лежащую в основе архитектуры наших ЭВМ.

Моделирование нейронов

Кора человеческого мозга состоит из порядка ста миллиардов нейронов. Исторически сложилось так, что учёные, исследующие работу мозга, пытались охватить своей теорией всю эту колоссальную конструкцию. Строение мозга описано иерархически: кора состоит из долей, доли — из «гиперколонок», те — из «миниколонок»… Миниколонка состоит из примерно сотни отдельных нейронов.
Как работает мозг? - 1

По аналогии с устройством компьютера, абсолютное большинство этих нейронов нужны для скорости и эффективности работы, для устойчивости ко сбоям, и т.п.; но основные принципы устройства мозга так же невозможно обнаружить при помощи микроскопа, как невозможно обнаружить счётчик команд, рассматривая под микроскопом микропроцессор. Поэтому более плодотворный подход — попытаться понять устройство мозга на самом низком уровне, на уровне отдельных нейронов и их колонок; и затем, опираясь на их свойства — попытаться предположить, как мог бы работать мозг целиком. Примерно так пришельцы, поняв работу логических вентилей, могли бы со временем составить из них простейший процессор, — и убедиться, что он эквивалентен по своим способностям настоящим процессорам, даже хотя те намного сложнее и мощнее.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js