Рубрика «AVX2»

XXH3: новый рекордсмен по скорости хеширования - 1
Бенчмарки сделаны в программе SMHasher на Core 2 Duo 3,0 ГГц

На Хабре неоднократно рассказывали про некриптографические хеш-функции, которые на порядок быстрее криптографических. Они применяются там, где важна скорость и нет смысла применять медленные MD5 или SHA1. Например, для построения хеш-таблиц с хранением пар ключ-значение или для быстрой проверки контрольной суммы при передаче больших файлов.

Одно из самых популярных — семейство хеш-функций xxHash, которое появилось около пяти лет назад. Хотя изначально эти хеши задумывались для проверки контрольной суммы при сжатии LZ4, но их стали применять на самых разных задачах. Оно и понятно: достаточно посмотреть на таблицу вверху со сравнением производительности xxHash и некоторых других хеш-функций. В этом тесте xxHash обходит ближайшего конкурента по производительности в два раза. Новая версия XXH3 поднимает планку ещё выше.
Читать полностью »

Разновидности SIMD - 1Во время разработки meshoptimizer частенько возникает вопрос: «А может этому алгоритму использовать SIMD?»

Библиотека ориентирована на производительность, но SIMD не всегда обеспечивает значительные преимущества по скорости. К сожалению, SIMD может сделать код менее переносимым и менее ремонтопригодным. Поэтому в каждом конкретном случае приходится искать компромисс. Когда первостепенное значение имеет производительность, приходится разрабатывать и поддерживать отдельные реализации SIMD для наборов инструкций SSE и NEON. В других случаях нужно понять, каков эффект от применения SIMD. Сегодня мы попытаемся ускорить меш-рационализатор (sloppy mesh simplifier) — новый алгоритм, недавно добавленный в библиотеку — используя наборы инструкций SSEn/AVXn.
Читать полностью »

Предыдущая часть вызвала бурную дискуссию, в ходе которой выяснилось, что AVX/AVX2 на самом деле есть в десктопных CPU, нет только AVX512. Поэтому продолжаем знакомиться с SIMD, но уже с современной его частью — AVX. А так же разберём некоторые комментарии:

  • медленнее ли _mm256_load_si256, чем прямое обращение к памяти?
  • влияет ли на скорость использование AVX команд над SSE регистрами?
  • действительно ли так плохо использовать _popcnt?Читать полностью »

Я продолжаю подробно рассказывать о приемах оптимизации, позволивших мне написать самый быстрый ресайз изображений на современных x86 процессорах. На этот раз речь пойдет о преобразовании вычислений с плавающей точкой в вычисления с целыми числами. Сперва я расскажу немного теории, как это работает. Затем вернусь к реальному коду, в том числе SIMD-версии.

В предыдущих частях:

Часть 0
Часть 1, общие оптимизации
Часть 2, SIMD

Читать полностью »

Это продолжение цикла статей о том, как я занимался оптимизацией и получил самый быстрый ресайз на современных x86 процессорах. В каждой статье я рассказываю часть истории, и надеюсь подтолкнуть еще кого-то заняться оптимизацией своего или чужого кода. В предыдущих сериях:

Часть 0
Часть 1, общие оптимизации

В прошлый раз мы получили ускорение в среднем в 2,5 раза без изменения подхода. В этот раз я покажу, как применять SIMD-подход и получить ускорение еще в 3,5 раза. Конечно, применение SIMD для обработки графики не является ноу-хау, можно даже сказать, что SIMD был придуман для этого. Но на практике очень мало разработчиков используют его даже в задачах обработки изображений. Например, довольно известные и распространенные библиотеки ImageMagick и LibGD написаны без использования SIMD. Отчасти так происходит потому, что SIMD-подход объективно сложнее и не кроссплатформенный, а отчасти потому, что по нему мало информации. Довольно просто найти азы, но мало детальных материалов и разбора реальных задач. От этого на Stack Overflow очень много вопросов буквально о каждой мелочи: как загрузить данные, как распаковать, запаковать. Видно, что всем приходится набивать шишки самостоятельно.

Читать полностью »

Ускорение операций в 2.5 раза по сравнению с Pillow и в 10 по сравнению с ImageMagick

Pillow-SIMD - 1

Pillow-SIMD — это «форк-последователь» библиотеки работы с изображениями Pillow (которая сама является форком библиотеки PIL, ныне покойной). «Последователь» означает, что проект не становится самостоятельным, а будет обновляться вместе с Pillow и иметь ту же нумерацию версий, только с суффиксом. Я надеюсь более-менее оперативно выпускать версии Pillow-SIMD сразу после выхода версий Pillow.

Почему SIMD

Есть несколько способов улучшения производительности обработки изображений (да и всех остальных вещей, наверное, тоже).

  1. Можно использовать более хорошие алгоритмы, которые дают такой же результат.
  2. Можно сделать более быструю реализацию существующего алгоритма.
  3. Можно подключить больше вычислительных ресурсов для решения той же задачи: дополнительные ядра CPU, GPU.

Читать полностью »