Рубрика «data mining» - 52

Модели Word2Vec

Как было упомянуто в первой части публикации, модели получаются из classes — представления результата текста word2vec виде ассоциативно-семантических классов путем сглаживания распределений.
Идея сглаживания в следующем.
Читать полностью »

Не прошло и полгода, как мы завершаем цикл статей об адаптивном обучении на Stepik! А, нет, прошло… Но я рада наконец представить вашему вниманию заключительную статью о том, зачем вообще нужно адаптивное обучение, как оно реализовано на Stepik и причём тут шахматы.

Рекомендательные системы в онлайн-образовании. Адаптивное обучение - 1

Читать полностью »

Глубинное обучение по особенностям заголовка и содержимого статьи для преодоления кликбейта - 1
Облако слов для кликбейта

TL;DR: Я добился точности распознавания кликбейта 99,2% на тестовых данных по особенностям заголовка и контента. Код доступен в репозитории GitHub.

Когда-то в прошлом я написал статью о выявлении кликбейта. Та статья получила хорошие отклики, а также много критики. Некоторые сказали, что нужно учитывать содержимое сайта, другие просили больше примеров из разных источников, а некоторые предложили попробовать методы глубинного обучения.

В этой статье я постараюсь решить эти вопросы и вывести выявление кликбейта на новый уровень.
Читать полностью »

Предсказываем будущее с помощью библиотеки Facebook Prophet - 1

Прогнозирование временных рядов — это достаточно популярная аналитическая задача. Прогнозы используются, например, для понимания, сколько серверов понадобится online-сервису через год, каков будет спрос на каждый товар в гипермаркете, или для постановки целей и оценки работы команды (для этого можно построить baseline прогноз и сравнить фактическое значение с прогнозируемым).

Существует большое количество различных подходов для прогнозирования временных рядов, такие как ARIMA, ARCH, регрессионные модели, нейронные сети и т.д.

Сегодня же мы познакомимся с библиотекой для прогнозирования временных рядов Facebook Prophet (в переводе с английского, "пророк", выпущена в open-source 23-го февраля 2017 года), а также попробуем в жизненной задаче – прогнозировании числа постов на Хабрехабре.

Читать полностью »

Существует огромное количество алгоритмов кластеризации. Основная идея большинства из них – объединить одинаковые последовательности в один класс или кластер на основе сходства. Как правило, выбор алгоритма определяется поставленной задачей. Что касается текстовых данных, то здесь сравниваемыми составляющими служат последовательности слов и их атрибутов (например, вес слова в тексте, тип именованной сущности, тональность и пр.). Таким образом, тексты изначально преобразуются в вектора, с которыми производят разного типа манипуляции. При этом, как правило, возникает ряд проблем, связанных с: выбором первичных кластеров, зависимостью качества кластеризации от длины текста, определением общего количества кластеров и т.п. Но наиболее сложной проблемой является отсутствие связи между близкими по смыслу текстами, в которых используется разная лексика. В таких случаях объединение должно происходить не только на основе сходства, а еще и на основе семантической смежности или ассоциативности.
Кластеризация текстовых документов по семантическим признакам (часть первая: описание алгоритма) - 1
Читать полностью »

Введение

Начну с конца. Это скриншот с некой web-карты, визуализирующей среднюю стоимость недвижимости на вторичном рынке Саратова и Энгельса:

Статистика по стоимости недвижимости — визуализация на карте - 1

Цвета на карте можно соотнести с цветами на «легенде», цвет на «легенде» соответствует средней стоимости квадратного метра общей площади в тысячах рублей.

Точка на карте соответствует одному предложению по продаже (на вторичном рынке) квартиры с Авито. Всего таких точек, как видно на «легенде», для построения графика использовалось 4943.
Карта в интерактивном виде доступна на GitHub.

А теперь немного предыстории..

Давным-давно…
Читать полностью »

Multidimensional Space Trading Strategies
Рис. 1. Оптимизация многомерного пространства алгоритмов торговых стратегий.

Оптимизация торговых стратегий

В процессе алгоритмической торговли постоянно возникает необходимость настройки параметров алгоритмов торговых стратегий. Сочетания всех возможных параметров превращается в большое многомерное пространство вариантов стратегий. Чтобы получить самые прибыльные и стабильные стратегии нужно исследовать это пространство и подобрать оптимальные параметры для торговли.
Читать полностью »

Всем доброго времени, друзья.

Введение

Когда мы думаем о биоинформатике, мы обычно представляем себе какие-нибудь сложные последовательности ДНК, фолдинг белка или, на худой конец, моделирование диффузии вируса.

В данной же статье речь пойдёт несколько о другой теме, куда более близкой, можно сказать, машинному зрению и анализу документов, или даже прикладной автоматизации, чем высокой науке. Но на самом деле, тема важна и актуальна, хотя бы уже потому, что существует в очень интересной экологической нише.

КДПВ:

Common Bird Census, или биоинформатика в орнитологии. Проект в хорошие руки - 1

Кого заинтересовал — прошу под кат.
Читать полностью »

Видео, доклады и краткий отчет для тех, кто не приехал и не успел посмотреть прямую трансляцию.

В офисе Superjob состоялся Data Science Meetup. Послушать доклады пришли около ста аналитиков и разработчиков, включая специалистов из Renault, Тинькофф банк, Эльдорадо, SAP, Вымпелком, Delloite, ВТБ и тд. Около 500 человек смотрели прямую трансляцию.

image
Читать полностью »

Открытый курс машинного обучения. Тема 3. Классификация, деревья решений и метод ближайших соседей - 1

Привет всем, кто проходит курс машинного обучения на Хабре!

В первых двух частях (1, 2) мы попрактиковались в первичном анализе данных с Pandas и в построении картинок, позволяющих делать выводы по данным. Сегодня наконец перейдем к машинному обучению. Поговорим о задачах машинного обучения и рассмотрим 2 простых подхода – деревья решений и метод ближайших соседей. Также обсудим, как с помощью кросс-валидации выбирать модель для конкретных данных.

Напомним, что к курсу еще можно подключиться, дедлайн по 2 домашнему заданию – 13 марта 23:59.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js