Рубрика «комплексные числа»

Привет!

Мы, программисты, инженеры и физики, привыкли к своему зоопарку математических инструментов. Векторы — для направлений и позиций. Матрицы — для трансформаций. Кватернионы — для вращений без головной боли с блокировкой осей. Комплексные числа — для 2D-поворотов и обработки сигналов. Каждый инструмент хорош для своей задачи, но мы постоянно переключаемся между ними, преобразуя данные и жонглируя концепциями.

А что, если я скажу вам, что существует единый математический объект, который может быть всем этим одновременноЧитать полностью »

Прочитав [1], хотя это и не академический материал, очень впечатлился идеей того, что мнимая единица i кодирует направление. Дело в том, что если мы имеем в формуле два скаляра, которые запрещено складывать и это - в математике, которая запросто суммирует апельсины с помидорами, происходящее должно нести какой-то смыслЧитать полностью »

Аннотация: Исследуется связь комплексных решений уравнения гармонического осциллятора с винтовыми движениями. Показано, что суперпозиция решений с противоположной хиральностью описывает синхронизированные линейные и вращательные колебания в системе "груз-пружина".

И что отдельно интересно, это то, что в очередной раз оказалось невероятно удобно работать с нейросетью DeepSeek:

  1. Получилось сначала обсудить с ней идею, за пол дня, написав ей подобие промптов, а она в конце написала мне промпт, как для другой нейросети, над чем мне подумать.

  2. Читать полностью »

Продолжаем разбираться с числостроительством в серии заметок «Изобретаем числа». В предыдущих статьях этой серии мы последовательно подходили к построению числовых систем (алгебраических структур, которые я неформально называю арифметиками), как модулей над более простыми системами. В прошлый раз мы ввели классификацию таких арифметик, пользуясь их матричными представлениями, и разбили их на классы: эллиптические, гиперболические и параболические.

Оглавление серии

  1. Изобретаем целые числа

  2. Читать полностью »

Продолжение серии статей, в которой мы разбираемся с тем, как упорядоченная пара двух чисел способна служить моделью для различных числовых систем, как привычных, так и весьма экзотических. Первая и вторая части были посвящены построению привычных кольца целых и поля рациональных чисел, вернее тому, как эти числовые системы можно моделировать упорядоченными парами элементов из более примитивных систем.

В этой части мы рассмотрим общие принципы построения числовых систем, как модулейЧитать полностью »

Как известно, кривыми Безье нельзя построить дугу окружности или эллипса. В этой статье рассматриваются кривые, лишённые такого недостатка.

Циркулярные кривые 2-го порядка - 1

Читать полностью »

Посмотрев лекцию профессора Робина Уилсона о тождестве Эйлера, я наконец смог понять, почему тождество Эйлера является самым красивым уравнением. Чтобы поделиться моим восхищением это темой и укрепить собственные знания, я изложу заметки, сделанные во время лекции. А здесь вы можете купить его прекрасную книгу.

Что может быть более загадочным, чем взаимодействие мнимых чисел с вещественными, в результате дающее ничто? Такой вопрос задал читатель журнала Physics World в 2004 году, чтобы подчеркнуть красоту уравнения Эйлера «e в степени i, умноженного на пи равно минус единице».

Самая красивая теорема математики: тождество Эйлера - 1

Рисунок 1.0: тождество Эйлера — e в степени i, умноженного на пи, плюс единица равно нулю.

Ещё раньше, в 1988 году, математик Дэвид Уэллс, писавший статьи для американского математического журнала The Mathematical Intelligencer, составил список из 24 теорем математики и провёл опрос, попросив читателей своей статьи выбрать самую красивую теорему. И после того, как с большим отрывом в нём выиграло уравнение Эйлера, оно получило званием «самого красивого уравнения в математике».
Читать полностью »

Всем привет! Со школы, решая квадратичные уравнения ( КУ ), например $inline$x^2+x+1=0$inline$, получал корни обладающие мнимой составляющей, $inline$x=-frac{1}{2}pm i frac{sqrt3}{2}$inline$, и при желании увидеть как график пересекает ось $inline$Y$inline$ в точках $inline$x=-frac{1}{2}pm i frac{sqrt3}{2}$inline$, в интернете находил графики вроде:

Квадратичное уравнение с комплексными числами в 3D - 1

Как график с мнимой частью выглядит ( по моим размышлениям ) в 3D ($inline$Xbot Ybot I$inline$), и есть тема данной статьи.

PS: Под катом тяжёлые анимации
Читать полностью »

В современной математике комплексное число является одним из фундаментальнейших понятий, находящее применение и в «чистой науке», и в прикладных областях. Понятно, что так было далеко не всегда. В далекие времена, когда даже обычные отрицательные числа казались странным и сомнительным нововведением, необходимость расширения на них операции извлечения квадратного корня была вовсе неочевидной. Тем не менее, в середине XVI века математик Рафаэль Бомбелли вводит комплексные (в данном случае точнее сказать, мнимые) числа в оборот. Собственно, предлагаю посмотреть, в чем была суть затруднений, доведших в итоге солидного итальянца до подобных крайностей.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js