Рубрика «speech recognition»

Привет! Распознаванием речи (ASR) уже никого не удивишь, но качественное распознавание на разговорном русском языке, а особенно в телефонии — очень сложная штука: люди редко говорят как профессиональные дикторы, часто бывает плохое качество звука с постоянными шумами на фоне и в целом есть миллиарды прочих нюансов. Наша компания занимается голосом больше 8 лет, есть собственные классные модели синтеза, распознавания и продукты на их основе, поэтому экспериментов мы проводим очень много и за появлением новых голосовых моделей следим очень внимательно. 

Читать полностью »

header

Мы сделали бесплатного телеграм-бота, который переводит аудио в текст. В отличие от нашего бесплатного публичного решения для транскрибации длинных аудио, этот бот скорее настроен для удобства работы с короткими голосовыми сообщениями, заметками и аудио средней длины (несколько минут).

Боту можно послать аудио как напрямую, так и добавить в группу. В группе бот будет реагировать на все аудиофайлы (но сообщения об ошибках выводиться не будут). Более подробно об ограничениях и особенностях работы можно узнать в методах /help и /faq.

Основная UX фишка работы бота — проработанный и удобный формат чтения и навигации по распознанным сообщениям и заметкам (а не стена текста).

Читать полностью »

При решении задач, связанных с распознаванием (Speech-To-Text) и генерацией (Text-To-Speech) речи важно, чтобы транскрипт соответствовал тому, что произнёс говорящий — то есть реально устной речи. Это означает, что прежде чем письменная речь станет нашим транскриптом, её нужно нормализовать.

Другими словами, текст нужно провести через несколько этапов:

  • Замена числа прописью: 1984 год -> тысяча девятьсот восемьдесят четвёртый год;
  • Расшифровка сокращений: 2 мин. ненависти -> две минуты ненависти;
  • Транскрипция латиницы: Orwell -> Оруэлл и т.д.

Normalization

В этой статье я коротко расскажу о том, как развивалась нормализация в датасете русской речи Open_STT, какие инструменты использовались и о нашем подходе к задаче.

Как вишенка на торте, мы решили выложить наш нормализатор на базе seq2seq в открытый доступ: ссылка на github. Он максимально прост в использовании и вызывается одним методом:

norm = Normalizer()
result = norm.norm_text('С 9 до 11 котики кушали whiskas')

>>> 'С девяти до одиннадцати котики кушали уискас'

Читать полностью »

Вы уже видели, что вытворяет нейросеть Порфирьевич? Она дописывает текст к любой вашей фразе. И действительно забавные штуки получаются, потому что обучена она на книгах Достоевского, Толстого, Пушкина, Булгакова, Гоголя и Пелевина.

«Озвучить все это дело голосом Левитана — получился бы отличный заменитель гугловского ассистента к новогоднему застолью...» — подумал я. И решил не откладывать это мероприятие на посленовогогода (а то ведь сами понимаете).

Под катом — весь процесс создания опенсорсного голосового ассистента Порфирьевич на исключительно опенсорсном фреймворке Aimybox, и его запуск вместо штатного Google ассистента. Ну и заодно Алису потроллить можно.
Читать полностью »

Бэрримор, что за шум вокруг Voximplant? Внедрили веб-сокеты, сэр - 1


WebSocket — это прогрессивный стандарт полнодуплексной (двусторонней) связи между клиентом и сторонним сервисом в режиме реального времени. Веб-сокеты используются для организации непрерывного обмена данными без разрыва соединения и дополнительных HTTP-запросов.

И мы рады сообщить вам, что все это стало возможным в Voximplant благодаря новому модулю VoxEngine, который называется – сюрприз – WebSocket. Отныне вы сможете передавать текст и аудио, пользуясь преимуществами веб-сокетов в полной мере. Проще говоря, у вас появился еще один инструмент, чтобы прокачать ваше приложение.

Из этой статьи вы узнаете, как создать исходящее WebSocket-соединение, передать через него аудиопоток и преобразовать его в текст с помощью Google Cloud Speech-to-Text API.Читать полностью »

image

В начале этого года по ряду причин мы загорелись идеей создать самый большой открытый датасет русской речи. Подробнее о нашей мотивации и о том, как всё начиналось,
можно прочитать в этой статье — Огромный открытый датасет русской речи. С тех пор наш проект прошел через ряд масштабных изменений, мы в три раза увеличили количество данных, повысили их качество, добавили лейблы для спикеров и сейчас мы наконец готовы представить вам версию 1.0.

Также мы не готовы останавливаться на достигнутом и планируем продолжать делать интесивную работу над ошибками в последующих версиях и улучшать качество уже опубликованных данных. Версию 1.1 мы планируем посвятить масштабной работе над ошибками.

Читать полностью »

Высококачественная, легковесная и адаптируемая технология Text-to-Speech с использованием LPCNet - 1


Последние достижения в области глубокого обучения привносят существенные улучшения в развитие систем синтеза речи (далее – TTS). Это происходит благодаря применению более эффективных и быстрых методов изучения голоса и стиля говорящих, а также благодаря синтезу более естественной и качественной речи.Читать полностью »

На просторах интернета до сих пор остаются актуальными капчи, которые в качестве опции предлагают прослушать текст с картинки, нажав на соответствующую кнопку. Если кому-то знакома картинка ниже и/или есть интерес как ее обойти, используя систему оффлайн распознавания звука, предлагается к прочтению.
Как обойти капчу, используя звук - 1

Читать полностью »

Распознавание эмоций с помощью сверточной нейронной сети - 1

Распознавание эмоций всегда было захватывающей задачей для ученых. В последнее время я работаю над экспериментальным SER-проектом (Speech Emotion Recognition), чтобы понять потенциал этой технологии – для этого я отобрал наиболее популярные репозитории на Github и сделал их основой моего проекта.

Прежде чем мы начнем разбираться в проекте, неплохо будет вспомнить, какие узкие места есть у SER.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js