Рубрика «Excel»

Моя девушка занимается закупками в торговой сети. Недавно в компании прошло большое сокращение, поэтому количество работы на одного сотрудника резко выросло. Поэтому ей пришлось регулярно задерживаться на работе, иногда даже выходить по субботам. Такая же проблема возникла и у её коллег.

image

О решении, позволившем моей девушке возвращаться домой вовремя, можно прочитать под катом.
Читать полностью »

Иногда мне бывает скучно и я, вооружившись отладчиком, начинаю копаться в разных программах. В этот раз мой выбор пал на Excel и было желание разобраться как он оперирует высотами рядов, в чём хранит, как считает высоту диапазона ячеек и т.д. Разбирал я Excel 2010 (excel.exe, 32bit, version 14.0.4756.1000, SHA1 a805cf60a5542f21001b0ea5d142d1cd0ee00b28).

Читать полностью »

Редактируем CSV-файлы, чтобы не сломать данные - 1

Продукты HFLabs в промышленных объемах обрабатывают данные: адреса, ФИО, реквизиты компаний и еще вагон всего. Естественно, тестировщики ежедневно с этими данными имеют дело: обновляют тест-кейсы, изучают результаты очистки. Часто заказчики дают «живую» базу, чтобы тестировщик настроил сервис под нее.

Первое, чему мы учим новых QA — сохранять данные в первозданном виде. Все по заветам: «Не навреди». В статье я расскажу, как аккуратно работать с CSV-файлами в Excel и Open Office. Советы помогут ничего не испортить, сохранить информацию после редактирования и в целом чувствовать себя увереннее.

Материал базовый, профессионалы совершенно точно заскучают.
Читать полностью »

Трехмерный движок на формулах Excel для чайников - 1

В этой статье я расскажу, как мне удалось портировать алгоритм рендера трехмерных сцен на формулы Excel (без макросов).

Для тех, кто не знаком с компьютерной графикой, я постарался как можно проще и подробнее описать все шаги. В принципе, для понимания формул должно быть достаточно знания школьного курса математики (+умение умножать трехмерную матрицу на вектор).

Также я сделал небольшое веб-приложение, где можно потренироваться в создании формул для произвольных фигур и сгенерировать свой файл Excel.

Осторожно: 19 картинок и 3 анимации под катом.Читать полностью »

image

Как-то, решая проблему лингвистического анализа в Power BI и заодно подыскивая примеры для моей предыдущей статьи, я вспомнил о задаче, которую пытался решить в Excel ещё несколько лет назад: нужно было внедрить в аналитическую систему словарь русского языка для лингвистического анализа большого количества запросов на естественном языке. Причём желательно было использовать стандартные офисные инструменты. Подавляющее большинство людей сразу взялись бы решать эту задачу в Excel, и я когда-то пошёл по тому же пути. В качестве словаря использовал открытый корпус русского языка (http://opencorpora.org/).

Но меня ждало разочарование — словарь состоял из 300 тыс. словоформ, более 5 млн записей, а для Excel это в принципе невозможный объём. Даже если запихнуть в него «всего лишь» 1 млн строк, то выполнять с ними какие-то манипуляции или, упаси боже, вычисления, сможет только очень терпеливый человек, который вообще никогда и никуда не торопится. Но в этот раз я решил натравить на задачу более подходящий инструмент — Power BI.
Читать полностью »

В прошлой статье я рассказал как для целей прогнозирования выручки люди построили большой и сложный excel файл (можете почитать тут). Мы решили вмешаться в этот стыд и предложили переделать модель прогноза так, чтобы было меньше ошибок, проще эксплуатация, появилась гибкость в настройке.

Какие ключевые проблемы в описанной модели:

  1. Данные, модель и представления смешаны в одну сущность. Из-за этого изменение хотя бы в одном элементы разрушает весь этот монолит.
  2. Чрезмерный расчет на ручную обработку, что плодит ошибки и опечатки в огромных количествах.

Что мы предложили:

  1. В начальной модели нигде не фигурировали исходные данные на которых она была построена. Мы предложили внести эти данные в формате 2-ой нормальной формы в сам файл Excel на 2 отдельных листа (продажи и кол-во клиентов). Благо, данные по продажам в нашей агрегации по месяцам — это всего лишь десятки тысяч строк, а не миллионы. Так же мы настроили получение этих данных при помощи Power Query напрямую из базы данных.Читать полностью »

image

Думаю, что по скриншоту уже понятно, о чём идёт речь. Но, дабы не дублировать текст, который уже описан в документации, я расскажу только о важных моментах.
Читать полностью »

Каждая компания это не звездные технологии и супер крутые программисты, а огромная гора bottleneck, неэффективностей и сумма плохих решений, которая как-то да едет и делает свою работу. Но вот вы решили сделать какие-то изменения и сразу начинаете сталкиваться с тем, что в огромном кол-ве бизнес процессов у вас проблемы. Ну и эти проблемы, конечно, нужно решать не идеальным способом, а оптимальным по трудозатратам.

Хочу поделится одним таким примером, связанных с моей темой анализа данных и управления данными. Во многих организациях существует финансовые службы, основная цель которых предоставлять финансовую информацию руководству о состоянии предприятия. Среди многих работ этих людей есть одна такая задача: составление прогноза выручки на следующий период (год, квартал у кого как). Этот прогноз выручки часто бывает первым этапов в согласовании планов на следующий период и составлении общего прогноза по прибылям и убыткам предприятия.

Все, кто занимается такого рода прогнозированием, понимают, что в этом вопросе важна не столько точность прогнозов, сколько правильные взаимосвязи между вашими предпосылками и результатами. Ведь что мы хотим от прогноза? Мы хотим узнать, что будет, если делать все как обычно (AS IS) и что будет, если мы что-то поменяем (сценарии). Для того, чтобы сделать эту работу финансовая служба должна придумать какую-то модель предприятия, которой она может легко управлять, легко объяснять бизнесу как она работает и легко предоставлять данные в различных разрезах, в которых бизнес захочет это дело посмотреть.

Это все отличные намерения, но тут мы сталкиваемся с суровой реальностью: методологические и технические навыки для выполнения этих задач в конкретных предприятиях откровенно слабы. Модели неудобные, быстро не изменяемые, не обновляемые, легко ничего не объясняется, файлы не удобные, а разрезы получить невозможно или очень долго. Давайте посмотрим конкретный пример, где всё плохо и как это можно исправить.

Читать полностью »

В этом году мы уже писали на Хабре про наш проект SmartCalls.io – визуальный конструктор звонков, созданный для бизнес-пользователей. Проект решает задачу бизнеса по массовым обзвонам клиентов: создается визуальный сценарий звонка, загружается Excel-файл с номерами телефонов и далее создается кампания по обзвону. Запускается кампания – начинается обзвон клиентов; в любой момент можно смотреть статистику, приостанавливать кампанию, подкручивать настройки. Клиенты были довольны, пока не выяснилось, что иногда надо обзванивать не просто много людей, а ОЧЕНЬ, ОЧЕНЬ много. Под катом – суть проблемы и как мы ее победили с помощью хайпового (не безосновательно) языка программирования.

Go против Excel на сотни тысяч строк - 1

Читать полностью »