Рубрика «машинное обучение» - 257

Действительно ли искусственный интеллект непостижим? - 1

Дмитрий Малютов мало что может рассказать о своём творении.

Он работает в исследовательском отделе IBM, и часть своего времени посвящает созданию систем машинного обучения, решающих задачи корпоративных клиентов компании. Одна такая программа разрабатывалась для большой страховой компании. Задание было непростым, требовался сложный алгоритм. Когда пришло время объяснять результаты клиенту, возникла заминка. «Мы не могли объяснить им эту модель, потому что они не разбирались в машинном обучении».

А даже если бы и разбирались, это могло им не помочь. Потому что моделью была искусственная нейросеть, программа, принимающая данные нужного типа – в нашем случае, дела клиентов страховой компании – и находившая в них шаблоны. Подобные сети используются на практике уже полстолетия, но недавно они испытали возрождение, и помогают совершать прорывы везде, от распознавания речи и переводов до игры в Go и робомобилей.
Читать полностью »

imageТехнология машинного обучения вызывает интерес у мировых финтех-компаний и финансовых организаций, чей бизнес так или иначе связан с инвестициями, кредитованием, консалтингом и решениями в области безопасности. Мы в компании PayOnline, специализирующейся на автоматизации приема онлайн-платежей, решили рассмотреть международные финтех-кейсы применения технологии машинного обучения.

В 80-х появились компьютеры, и постепенно мы наблюдали, как их использование для хранения и обработки информации становилось нормой для большинства компаний. В 90-х мы стали свидетелями интернет-бума, по-настоящему изменившего мир. Собрать информацию о чем-либо сегодня — сущий пустяк. В середине прошлого десятилетия появились социальные сети и предприниматели заметили, что клиенты начали проводить в них столько времени, сколько до этого не проводили ни на одном другом сайте. В итоге бизнесмены по всему миру начали инвестировать в социальные медиа для увеличения охвата аудитории и в маркетинговых целях. Когда широкой публике были представлены Android и iOS, произошел сдвиг парадигмы. Люди стали проводить больше времени со своими смартфонами, нежели персональными компьютерами. Со временем потребители начали пользоваться смартфонами для принятия решений, совершения покупок и даже платежей. Сегодня, поняв, что смартфоны стали неотъемлемой частью процесса принятия потребителем решений, компании стремятся предоставить им омниканальный опыт взаимодействия. В связи с этим возникает вопрос: «Какие еще существуют инновационные инструменты, способные изменить рынок?» Вероятно, компаниям следует обратить внимание на использование алгоритмов машинного обучения.
Читать полностью »

Злоумышленники, специализирующиеся на воровстве паролей, номеров банковских карт и прочей личной информации, появились еще в прошлом веке и с тех пор их число только растет. Согласно отчету Лаборатории Касперского, от 9% до 13% их пользователей в России сталкиваются с фишингом. Ежегодно в мире фишинг и другие формы кражи личных данных наносят ущерб в $5 млрд, согласно оценкам Microsoft. Это в целом соответствует нашим наблюдениям и объясняет, почему в любом более-менее популярном браузере есть защита от фишинга, основанная на «черных списках». В Яндекс.Браузере она тоже есть. Казалось бы, зачем изобретать что-то еще?

От черного списка до машинного обучения. Антифишинг в Яндекс.Браузере - 1

Safe Browsing

Самое очевидное решение для защиты пользователей – это использование готовой базы со списком фишинг-сайтов. Проверяем по «черному списку» посещаемые страницы и предупреждаем, если нашлось совпадение. На этой идее и основана защита с использованием технологии Safe Browsing, которая работает в Яндекс.Браузере с момента его появления.

Читать полностью »

Как мы искали компромисс между точностью и полнотой в конкретной задаче ML - 1

Я расскажу о практическом примере того, как мы формулировали требования к задаче машинного обучения и выбирали точку на кривой точность/полнота. Разрабатывая систему автоматической модерации контента, мы столкнулись с проблемой выбора компромисса между точностью и полнотой, и решили ее с помощью несложного, но крайне полезного эксперимента по сбору асессорских оценок и вычисления их согласованности.
Читать полностью »

Команда FlyElephant приглашает всех c 8 по 9 октября в Харьков на III Международнаю конференцию АI Ukraine, которая посвящена вопросам Data Science, Machine Learning, Big Data и Artificial Intelligence.

На конференции будут рассмотрены темы из различных областей Data Science и Machine Learning:

  • глубокое обучение нейронных сетей;
  • компьютерное зрение;
  • обработка естественного языка;
  • рекомендательные системы;
  • использование Machine Learning в биоинформатике;
  • Big Data инструменты: Hadoop, Spark и др.

Я буду рад видеть всех на нашем стенде, а также на докладе, в котором расскажу об Читать полностью »

WaveNet: новая модель для генерации человеческой речи и музыки - 1Наша облачная платформа Voximplant — это не только телефонные и видео звонки. Это еще и набор «батареек», которые мы постоянно улучшаем и расширяем. Одна из самых популярных функций: возможность синтезировать речь, просто вызвав JavaScript метод say во время звонка. Разрабатывать свой синтезатор речи — на самая лучшая идея, мы все-таки специализируемся на телеком бэкенде, написанном на плюсах и способном обрабатывать тысячи одновременных звонков и снабжать каждый из них JavaScript логикой в реальном времени. Мы используем решения партнеров и внимательно следим за всем новым, что появляется в индустрии. Хочется через несколько лет отойти от мема «Железная Женщина» :) Статья, адаптированный перевод которой мы сделали за эти выходные, рассказывает про WaveNet, модель для генерации звука (звуковых волн). В ней мы рассмотрим как WaveNet может генерировать речь, которая похожа на голос любого человека, а также звучать гораздо натуральнее любых существующих Text-to-Speech систем, улучшив качество более чем на 50%.

Мы также продемонстрируем, что та же самая сеть может использоваться для создания других звуков, включая музыку, и покажем несколько автоматически сгенерированных примеров музыкальных композиций (пианино).
Читать полностью »

Логика сознания. Часть 5. Смысловой подход к анализу информации - 1
Известный всем тест Тьюринга говорит о том, что понять: мыслит машина или нет, можно по тому отличим ли мы ее в беседе от человека или нет. При этом подразумевается, что вестись будет не светская беседа, а, по сути, допрос с пристрастием в котором мы будем всячески пытаться загнать машину в тупик. Что мы при этом будем проверять? Только одно — понимает ли машина суть задаваемых нами вопросов. Пытается ли она, просто, формально манипулировать словами или она может правильно интерпретировать значения слов, используя при этом знания, полученные ранее в беседе, или, вообще, общеизвестные людям знания.

Пожалуй, во время теста не особо интересно спрашивать у машины: когда была Куликовская битва. Гораздо интереснее что она скажет, например, о том: зачем мы нажимаем сильнее на кнопки пульта, у которого садятся батарейки?

Различие человеческого мышления и большинства компьютерных алгоритмов связано с вопросом понимания смысла. Как правило, в компьютерную программу закладываются достаточно жесткие правила, которые определяют то, как программа воспринимает и интерпретирует входную информацию. С одной стороны, это ограничивает вольность общения с программой, но, с другой стороны, позволяет избежать ошибок, связанных с неправильной трактовкой нечетко сформулированных высказываний.
Читать полностью »

Яндекс.Пробки и связанные с ними функции в Навигаторе и Картах работают благодаря данным о скорости машин на разных участках дорог. Это совсем не новая, но по-прежнему эффективная схема. Вопрос, возникший уже по мере развития Пробок — можно ли использовать указанные данные как-нибудь ещё?

Аналитик Карт Леонид Медников рассказал о примере такого использования на конференции Яндекса «Пути Сообщения 2016». Под катом — расшифровка доклада и большинство слайдов.

Читать полностью »

Наш технический директор* верит, что искусственный интеллект будет создан ориентировочно к середине этого века, и лет через пятьдесят с большой вероятностью будет достигнута около-сингулярность с виртуализацией, ИИ и вот этим всем.

Будущее сайтов: автоматическая сборка на базе ИИ и не только - 1

Но чтобы светлое завтра наступило, уже сегодня нужно решать связанные с ним практические задачи. Так что мы занялись технологией, которая будет делать сайты за людей. Нет, не за специалистов, создающих сложные и высоконагруженные системы. А за ребят с “сайтом-визиткой за 3000” — потому что ИИ, как минимум, не пропадет на месяц после предоплаты.

Прелесть вот в чем: запуск конструктора сайтов с нейросетью и алгоритмическим дизайном** — дело не пятидесяти, а всего пары лет. Это будущее, которое можно пощупать уже сегодня.
Читать полностью »

Что такое свёрточная нейронная сеть - 1

Введение

Свёрточные нейронные сети (СНС). Звучит как странное сочетание биологии и математики с примесью информатики, но как бы оно не звучало, эти сети — одни из самых влиятельных инноваций в области компьютерного зрения. Впервые нейронные сети привлекли всеобщее внимание в 2012 году, когда Алекс Крижевски благодаря им выиграл конкурс ImageNet (грубо говоря, это ежегодная олимпиада по машинному зрению), снизив рекорд классификации ошибок с 26% до 15%, что тогда стало прорывом. Сегодня глубинное обучения лежит в основе услуг многих компаний: Facebook использует нейронные сети для алгоритмов автоматического проставления тегов, Google — для поиска среди фотографий пользователя, Amazon — для генерации рекомендаций товаров, Pinterest — для персонализации домашней страницы пользователя, а Instagram — для поисковой инфраструктуры.

Но классический, и, возможно, самый популярный вариант использования сетей это обработка изображений. Давайте посмотрим, как СНС используются для классификации изображений.

Задача

Задача классификации изображений — это приём начального изображения и вывод его класса (кошка, собака и т.д.) или группы вероятных классов, которая лучше всего характеризует изображение. Для людей это один из первых навыков, который они начинают осваивать с рождения.

Что такое свёрточная нейронная сеть - 2Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js