Рубрика «молекулы» - 2

При обосновании свойств атомов и молекул принято ссылаться на постулаты квантовой механики, в которых разбираются далеко не все физики. Тем более химики, у которых принципы Паули и Гейзенберга, правила Клечковского и Хунда, и даже уравнение Шрёдингера не вызывают никаких чувств, кроме чувства глубокого уважения к вышеупомянутым физикам. Ещё хуже гуманитариям и прочим художественным натурам, которым описывать и разъяснять подобные принципы, правила и уравнения бесполезно. В результате один из них – художник Кеннет Снельсон (Kenneth Snelson; 29.06.1927 — 22.12.2016) – решил, что «спасение утопающих – дело рук самих утопающих». И в 1960 году придумал простую теорию строения атома, которому он посвятил несколько десятков своих картин, и даже изваял из гранита /1/.

Химия Кеннета Снельсона - 1
Рис. 1. «Атомные» скульптуры (4'x4'x4', гранит, 2009) /1/

Электроны в атомной модели Снельсона имеют кольцевую форму и формируют сферические электронные оболочки, состоящие из соприкасающихся электронных колец (“circle-sphere”). Модели таких «циклосфер» Снельсон построил из ферритовых кольцевых магнитов. Если их расположить на поверхности сферы, то при чередовании направления магнитного поля края смежных магнитов притягиваются друг к другу, и их внешние плоскости образуют многогранные (кольцегранные) оболочки.

Химия Кеннета Снельсона - 2
Рис.2. Магнитные модели электронных оболочек Снельсона

Наиболее устойчивые «электронные» структуры получаются из двух, восьми, десяти и четырнадцати магнитов.
Читать полностью »

Если молекулы – основные структуры, задействованные в химии – это слова, из которых состоят все окружающие нас материалы, тогда атомы – это буквы, строительные блоки молекул. Слова бывают разной длины, и типичная молекула тоже может содержать несколько атомов, или несколько сотен, или даже сто тысяч атомов. Молекула столовой соли NaCl состоит из двух атомов, натрия Na и хлора Cl. Молекула воды H2O содержит два атома водорода и один кислорода. Молекула столового сахара C12H22O11 содержит 12 атомов углерода, 11 кислорода и 22 водорода, организованных определённым образом.

Откуда нам известно о существовании атомов? Иногда их можно «видеть», так же, как мы видим молекулы, которые они могут формировать. Не глазами, но более продвинутыми устройствами. Один из методов использует сканирующий туннельный микроскоп, способный показывать атомы в кристалле или даже передвигать их по одному. Другой метод использует нашу возможность захвата ионов (немного изменённых атомов – подробности ниже).
Читать полностью »

В любой из больших библиотек мира комнаты и полки с книгами тянутся, кажется, бесконечно. Количество томов в Библиотеке конгресса США исчисляется десятками миллионов. В каждом из них представлены различные истории, детальные анализы, исторические документы – все со своим мнением. Но все эти миллионы книг, написанные по-английски, состоят всего лишь из нескольких десятков тысяч слов, а каждое слово состоит из комбинации всего 26 букв – от A до Z [плюс пробелы, знаки препинания и цифры – прим. перев.].

Тем временем все мы живём в окружении огромного и поразительного разнообразия материалов – включая и то, из чего создано множество типов биологических структур, входящих в состав наших тел и всех тел животных, растений и других живых существ. Планета, на которой мы обитаем, состоит из разного рода камней, некоторые из которых жёсткие и хрупкие, некоторые пластичные, обладающих различными цветами и текстурами. Кроме воды у нас есть алкоголь, кислоты, сахара и масла в различных видах. Готовящаяся в духовках еда выдаёт различные ароматы, которые мы вдыхаем из воздуха. К солям, мелу и сплавам нужно добавить синтетические материалы, включая разнообразные пластики. Но важно помнить, что огромные богатства Библиотеки материалов состоят из небольшого (хотя и довольно разнообразного) ассортимента молекул, которые, в свою очередь, состоят всего из сотни атомов – элементов от H до U и далее (от водорода до урана и далее).
Читать полностью »

Если совместить все случайные движения внутренних молекул, как далеко и как быстро переместится предмет?

Миллионы видели, как падают яблоки, и только Ньютон спросил, почему.
Бернард Барух

Одно из величайших удовольствий учёного, пишущего на любимые темы для всех желающих, состоит в том, что периодически ты натыкаешься на человека, которого всю жизнь интересовал какой-то вопрос, на который он не получил ответа. Если у вас есть такое чувство, вы можете отправить мне свой вопрос, и может вам повезёт так же, как Майку, который спрашивает:

Этот вопрос беспокоил меня с детских лет. Если всё случайное тепловое движение молекул в яблоке выберет одно и то же направление, как далеко переместится яблоко? И что тогда случится?

Если задуматься о микроскопических уровнях больших объектов, что вы себе представите?

Спросите Итана №93: случайное Ньютоново яблоко - 1
Окрашенные клетки яблока
Читать полностью »

В предыдущей статье мы говорили о числах-гигантах. Можно сказать, что мы совершили путешествие к бесконечности, а когда подошли к Числу Грэма, то лично у меня создалось ощущение, что вот еще чуть-чуть – и мы прикоснемся к ней рукой. Сегодня я предлагаю вам еще одно путешествие. На этот раз в микромир – мир малых объектов. Настолько малых, что среди всех тех, которые мы рассмотрим, песчинка будет самой крупной. Сразу скажу, что эта статья не о физике. Мы не будем говорить о квантовых эффектах, принципе неопределенности и теории струн. Я не физик (впрочем, я думаю, что вы поняли это и на основании моего предыдущего текста). Это статья о цифрах, масштабах и красоте. Добро пожаловать.
Читать полностью »

Учёные сделали из графена высокочувствительный молекулярный сенсор - 1

Несмотря на огромный потенциал такого уникального материала, как графен, практических приложений для него пока создано не очень много. Учёные из Федеральной политехнической школы Лозанны (Франция) совместно с исследователями Института фотонных исследований (Испания) сделали на основе графена сенсор. Этот сенсор обладает высокой чувствительностью, и его можно настроить на поиск определённого вида молекул.

В работе сенсора используется известный принцип инфракрасной атомно-абсорбционной спектроскопии. Этот метод позволяет изучать энергетические состояния квантовых систем путём исследования спектров поглощения электромагнитного излучения. Излучение непрерывного спектра пропускается через слой вещества, и часть его поглощается. При этом поглощаются волны с длинами, характерными для энергетических состояний исследуемого вещества.

Обычно для этого используется свет — но поскольку длина волны инфракрасного фотона составляет 6 микрометров, а молекулы имеют размеры в несколько нанометров, таким методом очень сложно обнаружить отдельные молекулы. Зато графен нужной геометрии способен фокусировать свет на нужном участке и улавливать соответствующие колебания молекулы, соединённой с ним.
Читать полностью »

image
Весы-камертон / Yabuno Lab./University of Tsukuba

Можно ли взвесить молекулу на весах? Учёные из Национального института передовой науки и техники и Цукубского университета (Япония) сконструировали весы, способные взвешивать объекты весом в несколько нанограмм с точностью в 1%.

Пока одна команда из Цукубы выключала старение в клетках, другая сконструировала нановесы, напоминающие микроскопический камертон. Сравнение с ним не случайно – весы работают по принципу самовозбуждающихся колебаний, когда колеблющееся тело влияет на фазу источника колебаний, что приводит к устойчивым периодическим движениям.

«Приборы на основе сдвоенных кантилеверов (выступающие зубцы), которые изготавливались ранее, могли лишь констатировать наличие массы, но не измерить её количественно»,- поясняет Хироши Ябуно, профессор университета. Под его руководством его выпускники сконструировали нановесы нового типа.

Весы изготовлены в виде сэндвича из двух слоёв кремния, между которыми находится изолятор. Кантилеверы имеют размер 500 на 100 мкм. Тестировались весы на полистироловых микросферах диаметром 15 мкм.
Читать полностью »

image
Машина для сборки молекул

Химики из университета Иллинойса под руководством Мартина Бёрка построили устройство, которое способно сделать сборку любых органических молекул такой же простой, как печать деталей на 3D-принтере. Автоматизация этого процесса позволит ускорить разработку новых лекарств и других технологий, зависящих от синтеза «небольших молекул».

«Небольшими молекулами» называют класс компактных органических молекул, которые широко используются, например, в качестве основы лекарственных средств в медицине. Также с их помощью биологи изучают свойства клеток и тканей. Но такие молекулы очень сложно синтезировать в лаборатории.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js