Рубрика «nlp» - 5

В эпоху цифровой трансформации каждая минута работы с документами на вес золота. Юридические отделы, банки, госучреждения ежедневно обрабатывают сотни договоров, доверенностей и судебных приказов. Ручной ввод данных, поиск реквизитов и проверка сроков могут отнимать до 20 минут на документ — и это если сотрудник не отвлекся на кофе. 

В нашей линейке продуктов есть универсальная IDP-платформа ContentCaptureЧитать полностью »

Как понять, "помнит" ли модель ваш текст?

Представьте, что у вас есть друг, который идеально завершает ваши мысли. Вы говорите: «В детстве я любил...», а он тут же продолжает: «...играть в футбол и смотреть “Смешариков”». Совпадение? Или он вас слишком хорошо знает?

Теперь представьте, что этот “друг” — языковая модель вроде GPT-4, обученная на десятках терабайт текста. Вы даёте ей фразу — и она точно угадывает продолжение. Вопрос: она действительно видела это раньше или просто хорошо обучена угадывать?

Вот тут на сцену выходит Membership Inference Attack (MIA)Читать полностью »

Привет!
Меня зовут Ярослав, я магистрант AI Talent Hub в ИТМО. Сегодня расскажу об одной из самых интересных статей ICLR 2025 — AFlow: Automating Agentic Workflow Generation.

В ней предложен подход к автоматическому созданию мультиагентных систем для решения прикладных задач с помощью LLM и алгоритма Monte Carlo Tree Search (MCTS). Разберемся, как это работает и почему это важно.

Мультиагентные системы – что это? 

Читать полностью »

Всем привет! Интересно, что на Хабре статьи по этой теме я не смог найти.

AutoPrompting: как улучшить промпты, сэкономив время и ресурсы промпт-инженеров - 1

Читать полностью »

Если вы до сих пор считаете, что positional encoding в трансформерах — это знаменитые sin/cos из статьи 2017 года, то боюсь, что собеседование для вас закончится автоматическим реджектом.

Позиционное кодирование заметно эволюционировало с момента появления оригинальной статьи о трансформерах. В современных LLM и моделях компьютерного зрения, таких как FLUX, уже давно не используется классическое sin/cos-кодирование.

Про это почему-то не знают 80% кандидатов на интервью, хотя, казалось бы, эта информация уже давно перешла в разряд «базовой классики».

Читать полностью »

Что важнее: создать продукт, или доставить его до пользователя? Оба этапа необходимы. Сегодня обсудим второй. Как нам построить поисковую e-com систему.

Покажем, что в слово логистика товара входят сложные задачи не только: перевезти наушники из Китая в Америку, но и настройка поисковой выдачи по запросу.

Быстро соберем поисковой MVP-сервис. Дообучим модель E5 на реальных данных от Amazon. Определим метрики качества и сравним BM25, pretrain E5 и fine-tune E5. Так же взглянем глазами с отладочной информациейЧитать полностью »

Обо мне

Привет, меня зовут Василий Техин. За последние 6 лет я прошёл путь от новичка в ML который ни в чем не разбирается, до человека, который может помочь разобраться другим не используя сложной математике и приправляя обьяcнение наглядными примерами. В этой серии статей я разбираю прорывные модели "на пальцах":

  1. ResNet-18 — Архитектура, покорившая глубину

  2. Vision Transformer (ViT) — Когда трансформеры научились видеть

  3. Diffusion Transformer (DiT) — Stable Diffusion 3 как она есть СегодняЧитать полностью »

От проблемы до технической реализации — опыт создания ИИ‑ассистента для Росатома за 48 часов хакатона АтомикХак 2.0

Часть 1: Бизнес‑кейс. Зачем это нужно?

Проблема, которая съедает миллионы

Представьте: новый сотрудник крупной корпорации ищет ответ на рабочий вопрос. Он открывает внутренний портал, видит сотни PDF‑инструкций, тысячи записей в базе знаний службы поддержки. Час поиска, звонки коллегам, еще час изучения документов. В итоге — либо неточный ответ, либо решение отложить задачу.

Читать полностью »

Про NER написано немало, но этот материал носит прикладной характер. Статья будет полезна тем, кто интересуется NLP и ищет разные подходы для решения узкопрофильных задач, требующих извлечения сущностей из текста.

Для джунов это возможность пройти весь путь — от разметки данных до обучения собственной кастомной NER-модели, попутно понять типичные сложности и ограничения.

Читать полностью »

Сегодня появляется все больше и больше приложений на основе больших языковых моделей — условным чат-ботом в Telegram уже никого не удивить. В рамках обучения в магистратуре AI Talent Hub мне не раз приходилось разрабатывать такие приложения с использованием ChatGPT или GigaChat. В этой статье я расскажу о полезном инструменте для работы с LLM - мы рассмотрим главные возможности фреймворка LangChain, а также методы мониторинга и проверки качества существующего приложения с ИИ.

Пара слов об LLM

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js