Рубрика «астрономия» - 20

Вторая лунная гонка. Что получат завоеватели? - 1

В начале XXI века открытие на полюсах Луны залежей льда стимулировало начать «вторую лунную гонку» между США (программа «Артемида»), КНР (Читать полностью »

Его недооценивают

image

То, что сейчас происходит Парад планет, слышали, наверное, многие. Кто-то называет этот парад планет “малым”, предполагая, что бывает и круче. Но в чем суть явления, осознают уже не так много представителей человечества.

А что вообще такое “Парад планет”?

Читать полностью »

Продолжаем разбираться с магнитным трамплином, в прошлой статье мы разобрались с массой неодимовых магнитов на трамплине (600 тонн) и грузопотоком (2% от массы в одну сторону по одной полосе и 200 миллионов тонн в месяц при одновременном потоке в 2 стороны, когда одни грузы ускоряются на Луну, а другие тормозят с Луны).

Безракетный запуск в космос: орбитальный магнитный трамплин часть 2 - 1


Магнитный трамплин сам по себе является лишь аккумулятором импульса, который забирает/передаёт импульс грузам с 99,99% КПД, но пока посылок с Луны и других планет не ожидается нам нужен поток в одну сторону, чтобы превратить аккумулятор в ускоритель, его нужно накачивать импульсом. Существует множество способов получения импульса, находясь на орбите Земли — в сотни раз более эффективным, чем ракеты на химическом топливе, и одним из них является солнечный парус. У света есть импульс и при падении + отражении света от зеркала = зеркало будет получать ускорение.Читать полностью »

Неужели мы пришли оттуда

Венера. Декабрь 2021 - 1

Читать полностью »

Может быть, в фантастике вам попадался такой сюжет: на орбите планеты появляется враждебный космический флот, бомбит ее и обстреливает, высаживает десант, а потом улетает с награбленным. Поразительно, но в современной космонавтике есть почти полный аналог — японский аппарат «Хаябуса-2» вышел на орбиту астероида Рюгу, затем высадил на его поверхность три ровера, сбросил кумулятивную бомбу, сделал по астероиду два выстрела и улетел на Землю с образцами, доставив их 5 декабря 2020. И все это было сделано с мирными целями во имя науки.

Шесть лет «Хаябусы-2» - 1
«Хаябуса-2» в 21 метре над астероидом, фото JAXA
Читать полностью »

Продолжаем цикл статей об орбитальной инфраструктуре, в прошлой статье мы разбирались с орбитальным ускорителем, а в этой статье мы разберёмся с орбитальным аккумулятором импульса, примерно посчитаем необходимую массу магнитов, сколько нужно сжечь нефти чтобы вывести такую дорогу на орбиту и оценим возможности такого аккумулятора.

Безракетный запуск в космос: орбитальный магнитный трамплин - 1

Принцип работы достаточно прост. Подбрасываем поезд на магнитной подушке вверх на высоту 400 км, для подъёма на такую высоту понадобится кинуть поезд вверх со скоростью ~1,7 км/с, если это делать с помощью обычной ракеты, то при удельном импульсе 3 500 м/с понадобится сжечь 650 кг топлива на каждую тонну полезной нагрузки, для сравнения: многоразовый Falcon 9 для вывода 1 тонны на орбиту сжигает 33 тонны топлива = в 50 раз больше.

Итак, подбрасываем поезд на высоту 400 км где он встречается с трамплином находящемся на орбите и двигающимся со скоростью 7,9 км/с. Трамплин геометрически является частью окружности (четверть в данном примере). При заезде под поезд, магниты поезда начинают отталкиваться от магнитов трамплина с ускорением 9,8 м/с$^2$, но из-за кривизны трамплина, поезд не может отлететь от трамплина, потому что, когда поезд ускоряется «вверх» на 10 м/с и поднимается на 5 метров выше — дорога тоже поднимается на 5 метров и, таким образом, поезд постоянно находится рядом с дорогой и постоянно ускоряется. При этом скорость самого поезда относительно трамплина всегда будет одинаковая, постоянные магниты по сути создают абсолютное скольжение с почти нулевым трением.

Математически, всё считается по формулам центробежной силы, как если бы мы привязали поезд верёвкой к центру и раскрутили до 7,9 км/с — центростремительную силу тут создают магниты, а центробежная сила создаётся кривизной трамплина. Кстати, это бы работало и с обычной машиной на колёсах.
Читать полностью »

Статья о приливном захвате, опубликованная мной две недели назад, оказалась очень интересна сообществу и получила высокую оценку: по состоянию на 26 ноября имела +69. Эта тема явно требует продолжения, тем более, что я уже затрагивал ранее тему близкого контакта звезд и экзопланет в статье «Что варится в пекулярных звездах» от 5 июня.

Читать полностью »

Телескоп «Евклид» вскоре начнёт изучать два миллиарда галактик. И это будет воистину технологическое чудо.

Как построить телескоп для охоты за тёмной энергией - 1

Вселенную заполняет загадочная сила, известная под названием тёмной энергии. Она заставляет нашу Вселенную расширяться с ускорением, в результате чего галактики разлетаются друг от друга всё быстрее и быстрее. Проблема в одном – мы не знаем точно, что это за сила. Как вообще может существовать такая важная сила, которую мы не понимаем?

Десятилетия астрономы задаются этим вопросом. И новый телескоп призван прояснить эту загадку. Телескоп Евклид Европейского космического агентства (ЕКА), который планируется запустить во второй половине 2022 года, не похож ни на какой другой аппарат. Он отправится в космос с тем, чтобы окончательно раскрыть некоторые из секретов тёмной энергии. Также он будет наблюдать и за тёмной материей – странным невидимым веществом, массой превосходящим всю обычную материю Вселенной. Невиданная доселе точность этих наблюдений перевернёт все наши представления о космосе.
Читать полностью »

С 1988 года до наших дней открыто более пяти тысяч планет, обращающихся вокруг других звезд. Основной прорыв в поиске и классификации этих планет был связан с работой орбитального телескопа «Кеплер», функционировавшего с 2009 по 2018 год и за этот период открывшего более 3500 небесных тел, сочтенных «кандидатами в экзопланеты». Более 1000 объектов, найденных «Кеплером», действительно оказались экзопланетами. Рассмотрение этой миссии – тема для целой книги (кстати, такая книга уже написана и переведена на русский язык, называется «Читать полностью »

Предыдущая статья Оумуамуа — решение парадокса Ферми вызвала живой интерес несмотря на свою узкоспециальную область. Изначально она задумывалась короткой, но оказалось, что довольно сложно лаконично описать. Это также отчасти является причиной критики - некоторые детали были не раскрыты и опущены в угоду краткости и простоте научно-популярного повествования. В новой статье можно более подробно рассмотреть детали. Сразу нужно отметить следующее:


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js