Рубрика «машинное обучение» - 2

Я уверен, вы видели модели машинного обучения, которые принимают текст и предсказывают, является ли он спамом. Аналогично модель может проанализировать отзыв о фильме и определить его тональность — положительную или отрицательную, понимать что «груша» связана с «яблоком» куда больше, чем с «теплоходом».

Первое правило обучения любой модели машинного обучения — это преобразование входных данных в числа. Любой цифровой объект можно представить как некое число: картинку, текст, аудио или видеофайл — практически всё что угодно.

Читать полностью »

Ещё раз о ЦП для машинного обучения в эпоху дефицита мощностей GPU

Читать полностью »


AI Security Gold Rush

Сейчас каждый делает решения для безопасности AI.

Последний год я анализировал разные решения и вот к какому выводу я пришёл:

Они все поразительно похожи:

  • Написаны на Python

  • ML-классификаторы для детекции

  • REST API обёртка

  • 50-200мс задержка

  • Десятки зависимостей

  • Облачный деплой

И вот неудобная правда:

Они сами становятся векторами атак.


Ирония Python-решений для безопасности

Когда ваш слой безопасности:

  • Имеет 50+ зависимостей (каждая — потенциальная CVE)

  • Добавляет 50-200мс к каждому запросу (приглашение для DDoS)

  • Читать полностью »

Главная задача этой статьи — показать связь между теорией информации Шеннона и инструментами, которые можно встретить в современных системах машинного обучения. Здесь мы поговорим об энтропии (entropy) и о приросте информации (information gain), потом перейдём к кросс-энтропии (перекрёстная энтропия, cross-entropy), к KL-дивергенции (дивергенция или расхождение Кульбака–Лейблера, относительная энтропия, KL-divergence), рассмотрим методы, используемые в современных системах генеративного ИИ.

Читать полностью »

Всё началось со знаменитого челленджа - соревнования, где разработчики пытаются создать прибыльного AI-трейдера. Идея засела в голове: а что если LLM действительно может торговать лучше человека? Без эмоций, без FOMO, без revenge trading в три часа ночи. Я решил проверить. И вот к чему это привело.

Читать полностью »
Книги, видео и курсы для изучения ML - 1

Собрали бесплатные ресурсы, которые позволят погрузиться в работу с искусственным интеллектом — как для новичков, так и для тех, кто уже работает с ML и хочет углубить знания.

Сборники материалов

Сборник учебных материалов от TensorFlow

Читать полностью »

Специализации наука о данных (Data Science) и искусственный интеллект (artificial intelligence) похожи, и у начинающих специалистов может возникнуть путаница. В этой статье мы рассмотри сходства и различия этих направлений, используемые инструменты и требования, которые предъявляются к специалистам.

Читать полностью »

Различные направления машинного обучения сейчас используются практически везде и порой сложно понять какое направление какие задачи решает. Сегодня мы попробуем разобраться в ключевых особенностях машинного обучения, рассмотрим из каких основных направлений состоит ML и как они используются. Основная цель этой статьи помочь начинающим специалистам разобраться с тем, что из себя представляет машинное обучение.

Цель машинного обученияЧитать полностью »

Знание механизма внимания и трансформеров - база любых собеседований на все грейды в NLP!

Статья не рассчитана на изучение тем с нуля, если вы еще не слышали ничего про attention, то лучше обратиться к полноценным лекциям.

Это чеклист и тренажёр, по которому стоит пройтись перед техническим интервью по NLP, чтобы закрыть пробелы и вспомнить необходимую базу.

Содержание:

  • Архитектура трансформера

  • Механизм внимания

  • Позиционные эмбеддинги

  • Токенизация

  • Трансформерные архитектуры (BERT, GPT и тд)

  • Полезные материалы

Читать полностью »

https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js