Рубрика «топология»

Компьютерное доказательство теории конденсированной математики — первый шаг к «великому объединению» - 1
Пример расчётного доказательства в программе Lean

Математики давно используют компьютеры в своей работе как инструменты для сложных вычислений и выполнения рутинных операций перебора. Например, в 1976 году методом компьютерного перебора была доказана теорема о четырёх красках. Это была первая крупная теорема, доказанная с помощью компьютера.

Теперь вспомогательный софт для доказательства теорем (proof assistant software) не просто проверяет доказательства, но помогает выйти на принципиально новый уровень великого объединения разных математических разделов. Концепция «конденсированной математики» обещает принести новые идеи и связи между областями, начиная от геометрии и заканчивая теорией чисел. Это в своём роде «великое объединение» математики
Читать полностью »

У Лизы Пиччирилло ушло меньше недели на поиски ответа на старый вопрос о странном узле, открытом более пятидесяти лет назад легендарным математиком Джоном Конвеем.

Аспирантка решила топологическую задачу полувековой давности - 1

Летом 2018 года на конференции по низкоразмерной топологии и геометрии Лиза Пиччирилло услышала о небольшой математической проблемке. Она показалась неплохим испытательным полигоном для некоторых техник, которые Лиза разрабатывала, будучи аспиранткой в Техасском университете в Остине.

«Я не разрешала себе работать над ней днём, — сказала она, — поскольку не считала эту задачу настоящей математикой. Я воспринимала её больше как домашнюю работу».

Вопрос состоял в следующем: является ли узел Конвея – сложное переплетение верёвки, открытое более пятидесяти лет назад легендарным математиком Джоном Хортоном Конвеем – срезом узла более высокой размерности. «Срезанность» – один из первых естественных вопросов, которые специалисты по теории узлов задают об узлах из пространств высоких разрешений, и математики смогли ответить на него для многих тысяч узлов, имеющих не более 12 пересечений – всех, кроме одного. Узел Конвея, имеющий 11 пересечений, дразнил математиков много десятилетий.
Читать полностью »

Для многих микросхема это черный ящик с нанесенной на нее маркировкой. Заглядываем в микросхему оперативной памяти и смотрим, что внутри. Небольшой реверс-инжиниринг в сборку. Статья для тех, кому интересна микроэлектроника и кто хочет познакомиться с ней.

Изучаем сборку микросхемы оперативной памяти на примере Hynix GDDR3 SDRAM - 1

Читать полностью »

image

В третьей части автор оригинальной статьи рассуждает о Зеленограде, памяти и смысле миниатюризации на пальцах.

Disclaimer: огда-то давно и сам баловался написанием статей про изготовление чипов, а в серии статей «Взгляд Изнутри» даже заглядывал внутрь оных, т.е. тема мне крайне интересна. Естественно, я бы хотел, чтобы сам автор оригинальной статьи опубликовал её на Хабре, но в связи с занятостью он разрешил мне перенести её сюда. К сожалению, правила Хабра не разрешают прямую копи-пасту, поэтому я добавил ссылки на источники, картинки и немножко отсебятины и постарался чуть-чуть выправить текст. Да, и статьи (1 и 2) по данной теме от amartology знаю и уважаю.
Читать полностью »

image

В первой части мы рассмотрели вкратце физику кремния, технологии микроэлектроники и технологические ограничения. Теперь поговорим о физических ограничениях и физических эффектов, которые влияют на размеры элементов в транзисторе. Их много, поэтому пройдемся по основным. Здесь придется уже влезть в физику, иначе никак.

Disclaimer: Когда-то давно и сам баловался написанием статей про изготовление чипов, а в серии статей «Взгляд Изнутри» даже заглядывал внутрь оных, т.е. тема мне крайне интересна. Естественно, я бы хотел, чтобы сам автор оригинальной статьи опубликовал её на Хабре, но в связи с занятостью он разрешил мне перенести её сюда. К сожалению, правила Хабра не разрешают прямую копи-пасту, поэтому я добавил ссылки на источники, картинки и немножко отсебятины и постарался чуть-чуть выправить текст. Да, и статьи (1 и 2) по данной теме от amartology знаю и уважаю.
Читать полностью »

image
Возможное фото 10 нм IceLake. Источник

Странные вещи творятся на процессорном рынке. Мировой лидер в лице фирмы Intel пятый год бьется в попытках перейти на 10 нм техпроцесс. Изначально заявляли о переходе на 10 нм в 2015-м году, потом в 2016-м, 2017-м… На дворе 2019-й, а 10-нм от Intel в серии так и нет. Ну как нет, есть отдельные опытные/инженерные образцы, но высокий выход годных — проблема. Реальный переход ожидается не раньше 2022 года уже.

Собственно, это и стало причиной дефицита процессоров Intel на рынке. Для его преодоления компания расширяет производство модифицированных 14 нм процессоров (теже Lake только в профиль) и даже возвращается к 22 нм. Казалось бы регресс налицо. А в это время корейский Samsung, тайваньский TSMC и примкнувший к ним AMD с платформой ZEN 2 рапортуют о вводе в серию аж 7 нм и вот-вот перейдут на 5 нм. Достали из пыльного шкафа «закон Мура» и объявили его живее всех живых. Скоро будет и 3 нм, и 2 нм, и даже 1 нм (sic!) — pourquoi pas?!

Что же произошло? Неужто ушлые азиаты обошли клятых пендосов в ключевой отрасли? Можно открывать шампанское?

Disclaimer: Данную статью я нашёл совершенно случайно и был крайне поражён, насколько грамотно и подробно в ней раскрываются проблемы современной микроэлектроники, в частности, смерть закона Мура и маркетинг. Когда-то давно и сам баловался написанием статей про изготовление чипов, а в серии статей «Взгляд Изнутри» даже заглядывал внутрь оных, т.е. тема мне крайне интересна. Естественно, я бы хотел, чтобы сам автор оригинальной статьи опубликовал её на Хабре, но в связи с занятостью он разрешил мне перенести её сюда. К сожалению, правила Хабра не разрешают прямую копи-пасту, поэтому я добавил ссылки на источники, картинки и немножко отсебятины и постарался чуть-чуть выправить текст. Да, и статьи (1 и 2) по данной теме от amartology знаю и уважаю.
Читать полностью »

«Сотовая» макетная плата - 1

В очередной раз задумавшись о прототипировании электроники, автор также задался вопросом: какая топология макетной платы окажется оптимальной (в смысле, наиболее гибкой) для работы с небольшими SMD-компонентами, в частности, в корпусах, подобных SOT23-3.Читать полностью »

Современные микроэлектронные технологии — как «Десять негритят». Стоимость разработки и оборудования так велика, что с каждым новым шагом вперёд кто-то отваливается. После новости об отказе GlobalFoundries от разработки 7 нм их осталось трое: TSMC, Intel и Samsung. А что такое, собственно “проектные нормы” и где там тот самый заветный размер 7 нм? И есть ли он там вообще?

Проектные нормы в микроэлектронике: где на самом деле 7 нанометров в технологии 7 нм? - 1

Рисунок 1. Транзистор Fairchild FI-100, 1964 год.

Самые первые серийные МОП-транзисторы вышли на рынок в 1964 году и, как могут увидеть из рисунка искушенные читатели, они почти ничем не отличались от более-менее современных — кроме размера (посмотрите на проволоку для масштаба).Читать полностью »

Нейронные сети совершили революцию в области распознавания образов, но из-за неочевидной интерпретируемости принципа работы, их не используют в таких областях, как медицина и оценка рисков. Требуется наглядное представление работы сети, которое сделает её не чёрным ящиком, а хотя бы «полупрозрачным». Cristopher Olah, в работе «Neural Networks, Manifolds, and Topology» наглядно показал принципы работы нейронной сети и связал их с математической теорией топологии и многообразия, которая послужила основой для данной статьи. Для демонстрации работы нейронной сети используются низкоразмерные глубокие нейронные сети.

Понять поведение глубоких нейронных сетей в целом нетривиальная задача. Проще исследовать низкоразмерные глубокие нейронные сети — сети, в которых есть только несколько нейронов в каждом слое. Для низкоразмерных сетей можно создавать визуализацию, чтобы понять поведение и обучение таких сетей. Эта перспектива позволит получить более глубокое понимание о поведении нейронных сетей и наблюдать связь, объединяющую нейронные сети с областью математики, называемой топологией.

Из этого вытекает ряд интересных вещей, в том числе фундаментальные нижние границы сложности нейронной сети, способной классифицировать определенные наборы данных.

Рассмотрим принцип работы сети на примере
Читать полностью »

1. Постановка задачи

Наборы числовых упорядоченных данных можно разделить на две группы: гауссовы и странные (негауссовы). Если к гауссовым данным можно применять количественное сравнение, то к странным данным такой подход неприменим ввиду их относительности и отсутствия стандарта, что оставляет возможным лишь качественный анализ, который во многих случаях является неоднозначным и трудоемким. При этом такие данные широко распространены, а задача их анализа является актуальной для многих областей науки.

Далее будет представлен вычислительный метод, преобразующий исходные негауссовы данные в гауссовы, что позволяет в дальнейшем сравнивать количественно структурные характеристики больших наборов данных.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js