Рубрика «топология» - 2

image
Возможное фото 10 нм IceLake. Источник

Странные вещи творятся на процессорном рынке. Мировой лидер в лице фирмы Intel пятый год бьется в попытках перейти на 10 нм техпроцесс. Изначально заявляли о переходе на 10 нм в 2015-м году, потом в 2016-м, 2017-м… На дворе 2019-й, а 10-нм от Intel в серии так и нет. Ну как нет, есть отдельные опытные/инженерные образцы, но высокий выход годных — проблема. Реальный переход ожидается не раньше 2022 года уже.

Собственно, это и стало причиной дефицита процессоров Intel на рынке. Для его преодоления компания расширяет производство модифицированных 14 нм процессоров (теже Lake только в профиль) и даже возвращается к 22 нм. Казалось бы регресс налицо. А в это время корейский Samsung, тайваньский TSMC и примкнувший к ним AMD с платформой ZEN 2 рапортуют о вводе в серию аж 7 нм и вот-вот перейдут на 5 нм. Достали из пыльного шкафа «закон Мура» и объявили его живее всех живых. Скоро будет и 3 нм, и 2 нм, и даже 1 нм (sic!) — pourquoi pas?!

Что же произошло? Неужто ушлые азиаты обошли клятых пендосов в ключевой отрасли? Можно открывать шампанское?

Disclaimer: Данную статью я нашёл совершенно случайно и был крайне поражён, насколько грамотно и подробно в ней раскрываются проблемы современной микроэлектроники, в частности, смерть закона Мура и маркетинг. Когда-то давно и сам баловался написанием статей про изготовление чипов, а в серии статей «Взгляд Изнутри» даже заглядывал внутрь оных, т.е. тема мне крайне интересна. Естественно, я бы хотел, чтобы сам автор оригинальной статьи опубликовал её на Хабре, но в связи с занятостью он разрешил мне перенести её сюда. К сожалению, правила Хабра не разрешают прямую копи-пасту, поэтому я добавил ссылки на источники, картинки и немножко отсебятины и постарался чуть-чуть выправить текст. Да, и статьи (1 и 2) по данной теме от amartology знаю и уважаю.
Читать полностью »

«Сотовая» макетная плата - 1

В очередной раз задумавшись о прототипировании электроники, автор также задался вопросом: какая топология макетной платы окажется оптимальной (в смысле, наиболее гибкой) для работы с небольшими SMD-компонентами, в частности, в корпусах, подобных SOT23-3.Читать полностью »

Современные микроэлектронные технологии — как «Десять негритят». Стоимость разработки и оборудования так велика, что с каждым новым шагом вперёд кто-то отваливается. После новости об отказе GlobalFoundries от разработки 7 нм их осталось трое: TSMC, Intel и Samsung. А что такое, собственно “проектные нормы” и где там тот самый заветный размер 7 нм? И есть ли он там вообще?

Проектные нормы в микроэлектронике: где на самом деле 7 нанометров в технологии 7 нм? - 1

Рисунок 1. Транзистор Fairchild FI-100, 1964 год.

Самые первые серийные МОП-транзисторы вышли на рынок в 1964 году и, как могут увидеть из рисунка искушенные читатели, они почти ничем не отличались от более-менее современных — кроме размера (посмотрите на проволоку для масштаба).Читать полностью »

Нейронные сети совершили революцию в области распознавания образов, но из-за неочевидной интерпретируемости принципа работы, их не используют в таких областях, как медицина и оценка рисков. Требуется наглядное представление работы сети, которое сделает её не чёрным ящиком, а хотя бы «полупрозрачным». Cristopher Olah, в работе «Neural Networks, Manifolds, and Topology» наглядно показал принципы работы нейронной сети и связал их с математической теорией топологии и многообразия, которая послужила основой для данной статьи. Для демонстрации работы нейронной сети используются низкоразмерные глубокие нейронные сети.

Понять поведение глубоких нейронных сетей в целом нетривиальная задача. Проще исследовать низкоразмерные глубокие нейронные сети — сети, в которых есть только несколько нейронов в каждом слое. Для низкоразмерных сетей можно создавать визуализацию, чтобы понять поведение и обучение таких сетей. Эта перспектива позволит получить более глубокое понимание о поведении нейронных сетей и наблюдать связь, объединяющую нейронные сети с областью математики, называемой топологией.

Из этого вытекает ряд интересных вещей, в том числе фундаментальные нижние границы сложности нейронной сети, способной классифицировать определенные наборы данных.

Рассмотрим принцип работы сети на примере
Читать полностью »

1. Постановка задачи

Наборы числовых упорядоченных данных можно разделить на две группы: гауссовы и странные (негауссовы). Если к гауссовым данным можно применять количественное сравнение, то к странным данным такой подход неприменим ввиду их относительности и отсутствия стандарта, что оставляет возможным лишь качественный анализ, который во многих случаях является неоднозначным и трудоемким. При этом такие данные широко распространены, а задача их анализа является актуальной для многих областей науки.

Далее будет представлен вычислительный метод, преобразующий исходные негауссовы данные в гауссовы, что позволяет в дальнейшем сравнивать количественно структурные характеристики больших наборов данных.

Читать полностью »

Если вы любите кататься на горных лыжах или сноуборде по некатанным склонам, или же вам просто надоели скучные выглаженные склоны Сорочан и Волена с их безумными ценами на подъемники – то эта статья для вас.

image

В феврале 2000 года шатл Endeavour 11 дней снимал топологию земли с помощью Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar. См. подробности тут

Результатом этого проекта явилась публично доступная база с данными о топологии земли за исключением ее полярных областей.

Полный массив данных имеет огромный размер и оперировать с ним в рамках ПК довольно проблематично. К счастью на сайте проекта Consortium for Spatial Information можно скачать топологиечкий файл для интересующей вас области.

Данные доступны в формате ESRI GRID(ARC ASCII), которые представляют собой простую матрицу высот. Каждая ячейка матрицы имеет одинаковую широту и долготу. Файл состоит из метаинформации и матрицы высот в 6001 строк и 6001 столбцов.
Читать полностью »

«Топология – это судьба», — сказал он, и натянул панталоны. Сначала на одну ногу, потом на другую.
— Нил Стивенсон

В начале октября в Стогкольме, Швеция, были объявлены Нобелевские лауреаты по физике. Премию за вклад в развитие этой науки получили сразу трое британских ученых: Дэвид Таулесс (David Thouless), Дункан Халдейн (Duncan Haldane) и Майкл Костерлиц (Michael Kosterlitz) за «теоретические открытия топологических фазовых переходов и топологических фаз материи». Физики расстроились, так как все считали, что приз достанется различным членам коллаборации LIGO, объявившим в этом году о впервые обнаруженных гравитационных волнах, источником которых стало слияние чёрных дыр. В этом году нобелевский комитет встал на практичную сторону, и наградил учёных, разработавших метод создания контролируемых «дыр» или дефектов в квантовых механических состояниях вещества, известных как конденсаты.

Их исследование привело к прорыву в материаловедении и физике конденсированных сред, и обещает революцию в электронике. Вот уже 24-й год подряд награда присуждается группе людей, и 53-й год подряд награду получают исключительно мужчины.
Читать полностью »

Объявлены лауреаты Нобелевской премии по физике - 1
Нобелевские лауреаты по физике 2016 года

Сегодня в Стогкольме, Швеция, были объявлены Нобелевские лауреаты по физике. Премию за вклад в развитие этой науки получили сразу трое британских ученых: Дэвид Таулесс (David Thouless), Дункан Халдейн (Duncan Haldane) и Майкл Костерлиц (Michael Kosterlitz) за «теоретические открытия топологических фазовых переходов и топологических фаз материи».

Результаты их работы позволили научному сообществу лучше объяснить такие явления как сверхпроводимость, сверхтекучесть и магнетизм двумерных материалов (под двумерными подразумеваются материалы состоящие из атомарных слоев). Соответствующая информация размещена на официальном сайте Нобелевской премии.
Читать полностью »

Доказательство отмечает конец эпохи в изучении трёхмерных форм.

Тридцать лет назад математик Уильям Тёрстон [William Thurston] рассказал о своём видении: систематизации всех возможных конечных трёхмерных форм.

Тёрстон, обладатель Филдсовской премии, проведший большую часть карьеры в Принстонском и Корнеллском университетах, имел сверхъестественную способность представлять непредставимое: не только формы, живущие в обычном трёхмерном пространстве, но и гораздо больший зверинец форм, обладающих такими сложными свойствами, что они могут вместиться только в пространство с большим количеством измерений. Там, где другие математики видели зачатки форм, Тёрстон видел структуры: симметрии, поверхности, взаимосвязь между разными фигурами.

Входим в форму: от гиперболической геометрии до кубических комплексов и обратно - 1
Уильям Тёрстон в Беркли в 1991 году.

«У многих людей после многих лет обучения складывается впечатление, что математика – это строгий и формальный предмет, занимающийся сложными и непонятными правилами,- писал он в 2009-м. – Хорошая математика являет собой полную противоположность этому. Математика – это искусство человеческого понимания… Математика поёт, когда мы чувствуем её всем мозгом».

В основании видения Тёрстона находился брачный союз между двумя, на первый взгляд, несопоставимыми подходами к изучению трёхмерных фигур: геометрией, знакомым царством углов, длин, областей и объёмов, и топологией, изучающей свойства формы, не зависящие от точных геометрических измерений – свойства, не меняющиеся, если форму растянуть или перекрутить, как "хэндгам".
Читать полностью »

Гексасфера: прорыв в полиэдральной геометрии - 1
Большинство считает, что эра великих открытий в области геометрии уже миновала. Но это — заблуждение. На днях ученым из Института Науки и Технологий Австрии впервые удалось построить регулярное разбиение сферы на шестиугольники. В ходе исследований использовались последние достижения алгебраической геометрии и топологии. Как утверждают авторы, для решения задачи им потребовались месяцы компьютерных вычислений.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js