Рубрика «machine learning» - 31

Как мы научили нейросеть определять документы - 1

Этим летом мы научили нейронную сеть определять, присутствует ли на изображении документ, и если да — то какой именно.

Для чего это понадобилось

Чтобы разгрузить сотрудников и обезопасить людей от мошенников. Мы применяем новую нейросеть в двух сферах: когда пользователь восстанавливает доступ к странице и для скрытия личных документов из общего поиска.

Читать полностью »

Привет!

С начала года мы провели больше 10 хакатонов и воркшопов по всей стране. В мае мы вместе с AI-community организовывали хакатон по направлению «Цифровизация производства». До нас хакатон про data science на производстве ещё не делали, и сегодня мы решили подробно рассказать о том, как это было.

Хакатон по Data Science в СИБУРе: как это было - 1

Цель была проста. Нужно было оцифровать наш бизнес на всех его этапах (от поставок сырья до производства и прямых продаж). Само собой, должны были решаться и задачи прикладного характера, например:

  • устранение простоев оборудования, технологических нарушений и сбоев;
  • повышение производительности и вместе с этим — качества продукции;
  • снижение затрат на логистику и закупки;
  • ускорение запуска и вывода на рынок новых продуктов.

В чём главная ценность таких задач? Правильно, в максимальном приближении к настоящим бизнес-кейсам, а не к абстрактным проектам. Первая задача уже подробно описана на Хабре одним из участников (спасибо, cointegrated Давид!). А второй задачей, вынесенной на хакатон, стала необходимость оптимизировать процесс совмещения плановых ремонтов ж/д-вагонов логистического парка. Это взяли прямо из нашего текущего бэклога, немного адаптировав для участников, дабы сделать её понятнее.

Итак, описание задачи.
Читать полностью »

Привет, в этой статье я расскажу про библиотеку ignite, с помощью которой можно легко обучать и тестировать нейронные сети, используя фреймворк PyTorch.

С помощью ignite можно писать циклы для обучения сети буквально в несколько строк, добавлять из коробки расчет стандартных метрик, сохранять модель и т.д. Ну, а для тех кто переехал с TF на PyTorch, можно сказать, что библиотека ignite — Keras для PyTorch.

В статье будет детально разобран пример обучения нейронной сети для задачи классификации, используя ignite

Обучение и тестирование нейронных сетей на PyTorch с помощью Ignite - 1

Читать полностью »

Суть

Оказывается для этого достаточно запуcтить всего лишь такой набор команд:

git clone https://github.com/attardi/wikiextractor.git
cd wikiextractor
wget http://dumps.wikimedia.org/ruwiki/latest/ruwiki-latest-pages-articles.xml.bz2
python3 WikiExtractor.py -o ../data/wiki/ --no-templates --processes 8 ../data/ruwiki-latest-pages-articles.xml.bz2

и потом немного отполировать скриптом для пост-процессинга

python3 process_wikipedia.py

Результат — готовый .csv файл с вашим корпусом.

Читать полностью »

В Нижнем Новгороде состоится фестиваль iFEST - 1
 
13 октября в технопарке “Анкудиновка” г. Нижний Новгород пройдет крупнейший в Приволжье IT фестиваль. В преддверии самого фестиваля 12 октября состоится хакатон по кибербезопасности и Искусственному Интеллекту. Мероприятие соберет на одной площадке ведущих международных экспертов IT/ИБ рынка, программистов, разработчиков, а также технологические, продуктовые и аутсорсинговые IT компании.
Читать полностью »

1. Введение

Этот текст — небольшое обобщение моего опыта подачи заявок на Computer Science PhD с уклоном в machine learning в Северной Америке. Я постарался собрать в этом гайде свои просчеты (учиться лучше на чужих ошибках) и более-менее универсальные вещи, полезные всем. Но все равно нужно понимать, что это довольно индивидуальный опыт, поэтому ваша личная стратегия может отличаться. Например, в случае выбора вузов/научных руководителей или в написании statement of purpose. Ну или вы находитесь в других стартовых условиях по сравнению со мной (оценки, статьи, рекомендации).

Имейте в виду, что основная часть гайда писалась до получения результатов, потому что мне хотелось избежать «ошибки выживших» (survivorship bias) и проанализировать свой опыт безотносительно того, поступил я или нет. В конце руководства есть мои результаты: я поступил в 2 из 11 вузов, в которые подавался. На мой взгляд, все равно стоит избегать ошибок, которые я здесь буду описывать. Ну и нужно понимать, что в процессе подачи на ML PhD очень много шума, поэтому можно сделать все хорошо и пролететь и наверное даже наоборот.

imageЧитать полностью »

Определение этажности дома по его фотографии без обучения с учителем - 1

В данной статье приведу, на мой взгляд, интересное решение задачи компьютерного распознавания объектов на изображении без использования обучения.

Читать полностью »

Рассмотрим один из сценариев, при котором ваша модель машинного обучения может быть бесполезна.

Есть такая поговорка: «Не сравнивайте яблоки с апельсинами». Но что делать, если нужно сравнить один набор яблок с апельсинами с другим, но распределения фруктов в двух наборах разное? Сможете работать с данными? И как будете это делать?
Насколько данные для обучения модели (не)похожи на тестовую выборку? - 1
Читать полностью »

Итак, вы разработали и натренировали свою нейронную сеть, для выполнения какой-то задачи (например то же распознавание объектов через камеру) и хотите внедрить ее в свое приложение на андроид? Тогда добро пожаловать под кат!
Читать полностью »

Пара мыслей об особенностях Российского Data Science - 1

Сегодня на Moscow Data Science Major рассказывал про приватность, этичный Data Science, и много интересных технических новинок. Люди внимательно слушали, задавали вопросы, благодарили. Но то что произошло потом было очень показательно. Об этом под катом.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js