Go (Golang) создан для эффективной параллельной и конкурентной работы. Его killer feature — легковесные потоки выполнения, называемые горутины (goroutines), и мощные средства синхронизации. Приглашаю разобраться подробно.
Go (Golang) создан для эффективной параллельной и конкурентной работы. Его killer feature — легковесные потоки выполнения, называемые горутины (goroutines), и мощные средства синхронизации. Приглашаю разобраться подробно.
Как правило, в Go для безопасного доступа к общим данным используются мьютексы. Да, каналы тоже можно приспособить для изменения общих данных, так как они потокобезопасны, но это усложняет и замедляет логику.
Но в этой статье мы поговорим о другом. Современные процессоры имеют поддержку атомарных операций, что позволяет на основе них организовывать работу с общими данными до нескольких раз быстрее, чем с помощью общепринятых вариантов. Так как мьютексы реализованы на основе ОС, каналы сделаны на основе внутреннего кода Go с использованием тех же мьютексов из ОС под капотом, а атомарные операции делает сам процессор аппаратно за существенно меньшее количество тактов.Читать полностью »
Атомики в Go - это один из методов синхронизации горутин. Они находятся в пакете стандартной библиотеки sync/atomic. Некоторые статьи сравнивают atomics с mutex, так как это примитивы синхронизации низкого уровня. Они предоставляют бенчмарки и сравнения по скорости, например Go: How to Reduce Lock Contention with the Atomic Package.

Я часто слышу от пробующих работать с Rust системных программистов жалобы на мьютексы и особенно на Rust Mutex API. Жалобы обычно выглядят так:
unlock, потому что им кажется, что это более явное действие.
Такие изменения превратили бы Rust mutex API в эквивалент C/Posix mutex API. Однажды я даже видел, как один разработчик пытался использовать Mutex<()> и разные хитрости, чтобы его имитировать.
Однако у такого стремления есть проблема: эти два аспекта Mutex неразрывно связаны друг с другом, а также с гарантиями безопасности Rust в целом — изменение одного из них или обоих откроет возможности для возникновения незаметных багов и повреждений из-за гонок данных.
Использование API мьютексов в стиле C, состоящего из набора косвенно защищаемых данных и из функций lock и unlock было бы опрометчивым в Rust, потому что это позволяет безопасному коду легко вносить ошибки, нарушающие безопасность памяти и вызывающие гонки данных.
Прозвучит спорно, но я утверждаю, что это справедливо и для C. Просто в Rust это более очевидно, поскольку Rust тщательно разделяет понятия «безопасного» кода, в который невозможно внести подобные ошибки, и «небезопасного» кода, в который можно вносить такие ошибки. В C такого разделения нет, и в результате этого использующий мьютексы код на C может тривиальным образом создавать серьёзные баги, которые потенциально можно подвергать эксплойтам.
В этом посте я разберу типичный C mutex API, сравню его с типичным Rust mutex API, и расскажу о том, что произойдёт, если мы изменим Rust API так, чтобы он напоминал C.
Читать полностью »
Предположим, у вас в коде есть критическая секция, которая не должна выполняться более, чем одним потоком одновременно.
В мире Java одним из стандартных решений является добавление ключевого слова synchronized к сигнатуре метода. В Kotlin для получения того же эффекта используется аннотация @Synchronized
Читать полностью » 
Хабр, как известно, не место для игр, но мы нашли одно исключение, которое, как нам кажется, достойно упоминания здесь!
Встречайте: Deadlock Empire!
Суть игры — управление планировкой потоков, код которых приведен в заданиях. Управлять нужно так, чтобы добиться ошибочной ситуации: взаимблокировки, повторных значений счетчиков, достижения определенных участков кода и прочих непредвиденных ситуаций, которые нужно осознавать при разработке многопоточных приложений.
Читать полностью »
Одним из нововведений в Go 1.9 было добавление в стандартную библиотеку нового типа sync.Map, и если вы ещё не разобрались что это и для чего он нужен, то эта статья для вас.
Для тех, кому интересен только вывод, TL;DR:
если у вас высоконагруженная (и 100нс решают) система с большим количеством ядер процессора (32+), вы можете захотеть использовать sync.Map вместо стандартного map+sync.RWMutex. В остальных случаях, sync.Map особо не нужен.

Если же интересны подробности, то давайте начнем с основ.
Последняя статья про классические примитивы синхронизации.
(Наверное, потом напишу ещё одну про совсем уже нетипичную задачу, но это потом.)
Сегодня мы немножко заглянем в процессор. Чуть-чуть.
По сути, мы будем говорить про единственный примитив, который принципиально отличается от остальных: спинлок. Spinlock.
В комментариях к предыдущим заметкам возникла дискуссия — насколько справедливо вообще выделять спинлок как примитив, ведь по сути он — просто мьютекс, верно? Он выполняет ту же функцию — запрещает одновременное исполнение фрагмента кода несколькими параллельными нитями.
На уровне процесса всё так и есть — различия между спинлоком и мьютексом — чисто технические, вопрос реализации и производительности.
Но меня эта тема интересует не только с позиции программиста юзерленда, но и с позиции разработчика ядра, а так же и разработчика самих примитивов синхронизации. И тут уже различие принципиально.
Дело в том, что внутри ядра мьютекс реализован с помощью спинлоков, а вот спинлоки реализованы сами по себе, автономно. Они — действительно базовый примитив. Ниже — только сам процессор.
Есть и ещё одно, семантическое различие. Мьютекс допускает и предполагает снятие нити с процессора, долгую остановку вызывающей нити. Мьютексом можно запереть объект на час или сутки, это приемлемо и нормально. Спинлок принципиально рассчитан только на кратчайшие приостановки, это всегда работа с неатомарным стейтом объекта. Присваивание группы переменных, небольшой цикл — это максимум того, что можно сделать под спинлоком.
Итак, иерархия реализации такова: mutex/cond/sema сделаны на базе спинлоков, спинлоки — на базе атомарных операций, предоставляемых процессором. Мы в них немного заглянем сегодня.
Как устроен спинлок?
Читать полностью »
Синхронизация нужна в любой малтитредной программе. (Если, конечно, она не состоит из локлесс алгоритмов на 100%, что вряд ли). Будь то приложение или компонента ядра современной операционной системы.
Меня всё нижесказанное, конечно, больше волнует с точки зрения разработки ядра ОС. Но почти всё применимо и к пользовательскому коду.
Кстати, ядра старых ОС в примитивах синхронизации не нуждались, поскольку преемптивной мультизадачности внутри ядра в старые добрые времена не было. (Уж за Юникс 7-й версии я отвечаю. Не было.) Точнее, единственным методом синхронизации был запрет прерываний. Но об этом позже.
Сначала перечислим героев. Мне известны следующие примитивы синхронизации:
User/kernel mode: mutex+cond, sema, enter/leave critical section.
Kernel only: spinlock, управление прерываниями.
Зачем всё это нужно, читатель, наверное, знает, но всё же уточним.
Если некоторая структура данных может быть доступна двум параллельно работающим нитям (или нити и прерыванию), и являет собой сущность, к которой нельзя обеспечить атомарный доступ, то работу с такой структурой нужно производить так, чтобы только одна нить одновременно выполняла сложные манипуляции состоянием структуры.
Читать полностью »
Здравствуй!
Я часто разрабатываю программы на C++ и люблю этот язык, что бы о нём ни говорили. Наверное потому, что во многих областях замены ему пока что нет. Однако язык этот, как все мы знаем, не лишён недостатков, и поэтому я всегда с интересом слежу за новыми подходами, паттернами или даже языками программирования, призванными решить какую-то часть этих проблем.
Так, недавно, я с интересом просматривал презентацию Степана Кольцова о языке программирования Rust, и мне очень понравилась идея реализации мьютаксов в этом языке. Причём никаких препятствий для реализации подобного примитива в C++ я не увидел и сразу же открыл IDE, с целью реализовать подобное на практике.
Читать полностью »