Рубрика «llm» - 9

От экспериментов Попова с радиосвязью до AI-звонков — как телефония стала основой умных коммуникаций

Voice AI-системы на базе Jambonz: от телефонии к диалогу человека и машины

Voice AI-системы на базе Jambonz: от телефонии к диалогу человека и машины

Читать полностью »

Статья является продолжением «Пишем агента на Kotlin: KOSMOS», но может читаться независимо. Мотивация к написанию — сохранить читателю время на возьню с фреймворками для решения относительно простой задачи.

Автор подразумевает у читателя теоретическое понимание того, что такое агент. Иначе лучше прочесть хотя бы начало предыдущей части.

Как и везде, в программирование важен маркетинг, поэтому обертку над http-запросами в цикле называют революцией:

Читать полностью »

«Дайте мне качественный датасет, и я переверну Землю!» — возможно, так перефразировал бы свою крылатую фразу Архимед, доведись ему тренировать современные LLM. Хороших наборов данных в открытом доступе не так много, а собрать свой — задача не из простых. О популярных способах сбора данных для датасетов, связанных с этим рисках и о решении, которое мы используем в YADRO, сегодня и поговорим. 

Меня зовут Антон Шадрин, я работаю в DevOps-команде дивизиона искусственного интеллекта YADRO. В работе с моделями искусственного интеллекта, как и в CI/CD-пайплайне, есть похожий набор шагов.

Читать полностью »

Введение

В этой статье я покажу, как всего за 30 минут встроить в ваш CI/CD-пайплайн полноценного AI-ревьюера и ассистента — без платных API-ключей, без интеграции с OpenAI и без лишней инфраструктуры. Всё, что нам понадобится, — это AI Review и OpenRouter — универсальный шлюз к десяткам LLM, от GPT-4o до Claude и Mistral, доступный бесплатно.

Мы настроим систему так, чтобы она автоматически запускалась при каждом Pull или Merge Request и не только оставляла комментарии к коду — от точечных inline-замечаний до Читать полностью »

Всем привет! Недавно я познакомился с курсом по глубокому обучению с подкреплением от HuggingFace Deep Reinforcement Learning Course и захотел сделать выжимку самого интересного. Эта статья — своего рода шпаргалка по основам Reinforcement Learning (RL) и одному из ключевых алгоритмов — PPO, который лежит в основе тонкой настройки современных LLM (Large Language Models).

Вы наверняка слышали про такие модели, как o1 от OpenAI или QwQ от Alibaba. Их "рассуждающие" способности во многом — результат применения RL. Давайте разберемся, как обычный принцип обучения, известный по играм вроде AlphaGo, помогает языковым моделям стать умнее.Читать полностью »

Привет! Этот пост — перевод очень хардовой статьи про внутренности vLLM и того, как устроен инференс LLM. Переводить было сложно из-за англицизмов и отсутствия устоявшегося перевода многих терминов, но это слишком классная статья, и она обязана быть на русском языке! А дальше — слово автору:

От paged attention, непрерывного батчинга, кэширования префиксов , specdec и т.д. — до мульти-GPU и мультинодового динамического сервинга LLM под нагрузкой.

Читать полностью »

Значительное событие готово трансформировать ИИ в здравоохранении. Исследователи из Stanford University, совместно с ETH Zurich и технологическими лидерами, включая Google Research и Amazon, представили OpenTSLM — новое семейство моделей языка временных рядов (Time-Series Language Models, TSLMs).
Это прорыв, который решает ключевую проблему существующих LLM (large language models) — способность интерпретировать и рассуждать о сложных, непрерывных медицинских временных рядах, таких как ЭКГ, ЭЭГ и потоки данных носимых датчиков, где даже передовые модели вроде GPT‑4o сталкивались с трудностями.

Критическая слепая зона: ограничения LLM в анализе временных рядов

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js