Рубрика «data mining» - 13

Привет, читатели! Отфильтровав для вас большое количество источников и подписок — собрал все наиболее значимые новости из мира машинного обучения и искусственного интеллекта за сентябрь. Не забудьте поделиться с коллегами, или просто с теми, кому интересны такие новости.

Для тех, кто не читал дайджест за август, можете прочесть его здесь.

Итак, а теперь дайджест за сентябрь:

1. Ученые EPFL разработали мягкую искусственную кожу, которая обеспечивает тактильную обратную связь и — благодаря сложному механизму самочувствия — потенциально способна мгновенно адаптироваться к движениям пользователя.

Читать полностью »

Создаем датасет для распознавания счетчиков на Яндекс.Толоке - 1

Как-то два года назад, случайно включив телевизор, я увидел интересный сюжет в программе "Вести". В нём рассказывали о том, что департамент информационных технологий Москвы создает нейросеть, которая будет считывать показания счетчиков воды по фотографиям. В сюжете телеведущий попросил горожан помочь проекту и прислать снимки своих счетчиков на портал mos.ru, чтобы на них обучить нейронную сеть. 

Если Вы — департамент Москвы, то выпустить ролик на федеральном канале и попросить людей прислать изображения счетчиков — не очень большая проблема. Но что делать, если Вы — маленький стартап, и сделать рекламу на телеканале не можете? Как получить 50000 изображений счетчиков в таком случае?Читать полностью »

image

This post is a small abstract of full-scaled research focused on keyword recognition. Technique of semantics extraction was initially applied in field of social media research of depressive patterns. Here I focus on NLP and math aspects without psychological interpretation. It is clear that analysis of single word frequencies is not enough. Multiple random mixing of collection does not affect the relative frequency but destroys information totally — bag of words effect. We need more accurate approach for the mining of semantics attractors.

Читать полностью »

Примерно 5 миллисекунд проходит от запроса до ответа, если данные хранятся на жестком диске. SSD отвечает в 300 раз быстрее — за 150 микросекунд. Оперативной памяти требуется в 300,000 раз меньше времени — лишь 15 наносекунд.*

Как технология in-memory изменила бизнес-аналитику - 1

Можно долго рассуждать о том, как бизнес-аналитика помогает финансам или логистике. Способов применить информацию много, все время появляются новые. Но принцип работы разных аналитических решений один и заключается он в том, чтобы соединить данные из разных источников и посмотреть на них вместе — то есть целиком.

Чтобы воспользоваться информацией из нескольких источников, нужно к ним подключиться и извлечь данные. Но данные создавались разными способами, с разной периодичностью и хранятся в разных форматах. Поэтому прежде, чем визуализировать данные или передать другим системам для дальнейшей обработки, их придется объединить с помощью каких-то математических операций — трансформировать.

Технология in-memory заключается в том, что для трансформации в оперативную память единовременно загружаются все данные из разных источников. После этого трансформацию можно выполнить «на лету», без запросов к диску. Например, кликом выбрать измерение и сразу получить график, который будет отображать значения показателей в нужном разрезе. Благодаря тому, что все данные уже в оперативной памяти, аналитическому приложению не нужно делать запросы к жесткому диску для получения новой информации.

Это вступление должно помочь мне рассказать о том, как и почему менялись технологии, лежащие в основе современных аналитических решений.Читать полностью »

Как узнать наверняка, что внутри у колобка?
Может, ты его проглотишь, а внутри него река?
© Таня Задорожная

Что такое Data Science сегодня, кажется, знают уже не только дети, но и домашние животные. Спроси любого котика, и он скажет: статистика, Python, R, BigData, машинное обучение, визуализация и много других слов, в зависимости от квалификации. Но не все котики, а также те, кто хочет стать специалистом по Data Science, знают, как именно устроен Data Science-проект, из каких этапов он состоит и как каждый из них влияет на конечный результат, насколько ресурсоемким является каждый из этапов проекта. Для ответа на эти вопросы как правило служит методология. Однако бОльшая часть обучающих курсов, посвященных Data Science, ничего не говорит о методологии, а просто более или менее последовательно раскрывает суть упомянутых выше технологий, а уж со структурой проекта каждый начинающий Data Scientist знакомится на собственном опыте (и граблях). Но лично я люблю ходить в лес с картой и компасом и мне нравится заранее представлять план маршрута, которым двигаешься. После некоторых поисков неплохую методологию мне удалось найти у IBM — известного производителя гайдов и методик по управлению чем угодно.
Читать полностью »

Написал пост, который идет строго в закладки, он со списком полезнейших книг по анализу данных, математике, data science и machine learning. Они будут полезны как новичкам, так и профессионалам. Для удобства можете читать здесь или использовать удобный google docs, в нем книги разбиты по столбцам и категориям. Пользуйтесь и прокачивайте скиллы сами + делитесь с коллегами.

Конечно, весь список книг неполный. Поэтому добавляйте в комментарии свои полезные ссылки на крутые книги, самые топовые из них я добавлю в список.

image

Книги по анализу данных, математике, data science и machine learning:

Читать полностью »

Хабр, привет.

Этот пост — краткий обзор общих алгоритмов машинного обучения. К каждому прилагается краткое описание, гайды и полезные ссылки.

Метод главных компонент (PCA)/SVD

Это один из основных алгоритмов машинного обучения. Позволяет уменьшить размерность данных, потеряв наименьшее количество информации. Применяется во многих областях, таких как распознавание объектов, компьютерное зрение, сжатие данных и т. п. Вычисление главных компонент сводится к вычислению собственных векторов и собственных значений ковариационной матрицы исходных данных или к сингулярному разложению матрицы данных.

image

SVD — это способ вычисления упорядоченных компонентов.

Полезные ссылки:

Вводный гайд:

Читать полностью »

CQM — другой взгляд в глубоком обучении для оптимизации поиска на естественном языке

Краткое описание: Calibrated Quantum Mesh (CQM)— это следующий шаг от RNN / LSTM (Рекуррентные нейронные сети RNN (Recurrent Neural Networks) / Долгая краткосрочная память (Long short-term memory; LSTM) ). Появился новый алгоритм, называемый Calibrated Quantum Mesh (CQM), который обещает повысить точность поиска на естественном языке без использования размеченных данных обучения.
Читать полностью »

Недавно мне на глаза попался датасет на Kaggle с данными о 45 тысячах фильмов с Full MovieLens Dataset. Данные содержали не только информацию об актерах, съемочной команде, сюжете и т.п., но и оценки, выставленные фильмам пользователями ресурса (26 миллионов оценок от 270 тыс.пользователей).

Стандартная задача для таких данных — это рекомендательная система. Но мне в голову почему-то пришло прогнозирование рейтинга фильма на основе информации, доступной до его выхода. Я не знаток кинематографа, и поэтому обычно ориентируюсь на рецензии, выбирая что посмотреть из новинок. Но ведь рецензенты тоже несколько biased — они-то смотрят гораздо больше разных фильмов, чем рядовой зритель. Поэтому спрогнозировать, как оценит фильм обычная публика, показалось занятным. Читать полностью »

Серия «Белый шум рисует черный квадрат»

История цикла этих публикаций начинается с того, что в книге Г.Секей «Парадоксы в теории вероятностей и математической статистике» (стр.43), было обнаружено следующее утверждение:

Треугольник Паскаля vs цепочек типа «000…-111…» в бинарных рядах и нейронных сетях - 1
Рис. 1.

По анализу комментарий к первым публикациям (часть 1, часть 2) и последующими рассуждениями созрела идея представить эту теорему в более наглядном виде.

Большинству из участников сообщества знаком треугольник Паскаля, как следствие биноминального распределения вероятностей и многие сопутствующие законы. Для понимания механизма образования треугольника Паскаля развернем его детальнее, с развертыванием потоков его образования. В треугольнике Паскаля узлы формируются по соотношению 0 и 1, рисунок ниже.

Треугольник Паскаля vs цепочек типа «000…-111…» в бинарных рядах и нейронных сетях - 2
Рис. 2.

Для понимания теоремы Эрдёша-Реньи составим аналогичную модель, но узлы будут формироваться из значений, в которых присутствуют наибольшие цепочки, состоящие последовательно из одинаковых значений. Кластеризации будет проводиться по следующему правилу: цепочки 01/10, к кластеру «1»; цепочки 00/11, к кластеру «2»; цепочки 000/111, к кластеру «3» и т.д. При этом разобьём пирамиду на две симметричные составляющие рисунок 3.

Треугольник Паскаля vs цепочек типа «000…-111…» в бинарных рядах и нейронных сетях - 3
Рис. 3.

Первое что бросается в глаза это то, что все перемещения происходят из более низкого кластера в более высокий и наоборот быть не может. Это естественно, так как если цепочка размера j сложилась, то она уже не может исчезнуть.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js