
Проблемы, с которыми сталкиваются роботакси
Роботакси сталкиваются с серьезными проблемами в городских условиях:
Роботакси сталкиваются с серьезными проблемами в городских условиях:
Китайский автопром быстро прошёл путь от ржавых плагиатных вёдер до главного поставщика автомобильных инноваций. Но компания NIO выделяется даже на этом фоне за счёт необычных технологических и бизнес-решений. Разбираем, как она это делает, и почему именно NIO (а не BYD или, скажем, Li Xiang) называют самой инновационной автомобильной компанией Поднебесной.
В этой статье будет кратко описана концепция пространственного искусcтвенного интеллекта, автором которой является Фей-Фей Ли-одна из ведущих мировых исследователей в области ИИ. Затем будут приведены высказывани на эту тему Яна Лекуна и других ученых. Во второй части будут приведены практические примеры использования концепции пространственного ИИ. И наконец попробуем абстрактно описать теорию и практику применения данной концепции без использования IT-терминологии.
В начале пару слов об авторе концепции пространственного ИИ.
Фэй-Фэй ЛиЧитать полностью »
При сборке квадрокоптеров и других БПЛА обычно используют готовую плату полетного контроллера, содержащую все необходимые датчики и периферию, и готовую полетную прошивку, например, Betaflight, ArduPilot или PX4. Полетный контроллер управляет моторами квадрокоптера и обеспечивает стабильный полет.
С каждым годом число автомобилей на дорогах неуклонно растет, все больше загрязняя окружающую среду, ухудшая мобильность транспортных средств и увеличивая число аварий и смертей на дорогах. Множество умов уже давно стараются разработать безопасное для участников движения решение, позволяющее увеличить пропускную способность дорог. Было предложено множество вариантов: летательные средства передвижения, подземные автомобильные магистрали и даже надземная система путепроводов. Однако у каждого предложенного варианта есть различные сложности в реализации.
Сегодня мы хотим рассказать о направлении, с которого мы, Cognitive Pilot, исторически начали свои разработки в области создания беспилотных технологий, а именно отрасли automotive. Вообще эта сфера ставит перед разработчиками беспилотных систем наиболее интересные задачи: на дорогах общего пользования сцены намного сложнее и динамичнее, чем в сельском хозяйстве или на рельсах, а поведение объектов часто почти невозможно предугадать. Для создания беспилотных автомобилей используются технологии глубокого обучения, наиболее сложные нейронные сети и объемные датасеты.
Но вместе с тем не секрет, что промышленное использование беспилотных автомобилей на дорогах общего пользования не разрешено законодателями. И получение санкций на это не стоит ожидать прямо завтра. Участникам рынка еще предстоит решить целый ряд серьезных организационных, юридических, технических и иных проблем. Поэтому мы и выбрали в качестве приоритетных, реальные рынки агро- и рельсового транспорта, на которых наш ИИ может работать и приносить пользу уже сегодня, где, например, комбайнеры уже не касаются руля, сосредоточившись на управлении техпроцессом уборки зерновых, машинисты локомотивов повышают безопасность работы, и где в рамках представленных нами моделей использования автопилотов не нужно ждать разрешения чиновников того или иного уровня.
Недавно мой коллега рассказал как мы роботизируем зерноуборочные комбайны и чему научились за этот сезон.
Начинается уборка кормовых культур и мы активно осваиваем кормоуборочную технику.
Кормоуборочный комбайн – технически более сложная и мощная машина. В связке с ним идут сразу несколько транспортных средств для сбора урожая (трактора с прицепом, грузовики, силосовозы). К работе на такой технике допускаются только опытные механизаторы, у которых за спиной несколько лет работы.
Работа на комбайне во время уборки кормовой кукурузы похожа на езду в машине в густом тумане, только вместо тумана на протяжении всего пути высокая зеленая стена из растений, из которой может выскочить кабан, столб или человек. Перемолов человека (история есть в моей прошлой статье), комбайнеры седеют и больше не могут работать. Кроме этого, в этом «зеленом тумане» надо суметь не врезаться в рядом едущий силосовоз, следить за точностью загрузки силоса с хоботом длиной до 7 метров, из которого вылетает по 50-60 кг силоса в секунду, и равномерно заполнять фургон, чтобы он не гонял полупустым туда сюда.
Фактически один комбайнёр работает за троих, следит за процессом уборки кукурузы (одно рабочее место), ведёт технику (второе рабочее место), загружает силосовоз (третье рабочее место). В итоге что-то страдает. Если плохо вести, можно сломать дорогую технику (минимальная цена кормоуборочного комбайна 16 млн рублей, есть модели и по 50 миллионов), поэтому обычно ухудшается качество уборки и загрузки.
Большую часть работы мы автоматизируем, сейчас расскажу какие сложности мы преодолеваем и что делаем.
Читать полностью »
А ведь в прошлом году это делали senior-разработчики.
Возможно, вы помните, что мы говорили про то, как можно сильно улучшить работу обычного сельскохозяйственного комбайна, если использовать нейросетки для распознавания культур и препятствий и робота для автопилотирования. Всё это (кроме процессоров Nvidia и ещё части железа) — наша разработка. А радость в том, что в некоторых южных регионах страны закончилась уборочная страда, и наши комбайны показали себя лучше, чем ожидалось. Слава роботам!
В этом году мы поставили несколько сотен блоков из мощного графического ядра (для нейросетей), камер, гидравлических насосов или CAN-модулей для подруливания. Если в прошлом году агропилоты были в опытной эксплуатации, то сейчас речь идёт уже про серийные модели. И они справились.
Более того, они справились лучше, чем мы ждали. Кроме того, в релиз вошли далеко не все фичи. В релизе осталось, по сути, ядро, но одно только это позволило получить очень заметный экономический эффект.
Конечно, обошлось не без сюрпризов. Но давайте расскажу более конкретно, с числами и примерами.
Читать полностью »
В статьях моих коллег про беспилотные трамваи и тепловозы были упомянуты радары. Они широко применяются в автомобильной отрасли для реализации стандартных функций активной и пассивной безопасности. Решения для высокоавтоматизированных систем управления (включая беспилотный транспорт) требуют более гибких и продвинутых технологий. В Cognitive Pilot радарами занимается специальное подразделение, которое до конца 2019 года работало как Design House, выпуская по контрактной модели решения для автопроизводителей и поставщиков компонентов. Сейчас мы переходим на новую бизнес-модель и готовим к серийному производству линейку радаров для широкого круга заказчиков — от проектов DIY до стартапов и опытных парков. На базе использующихся в проектах Cognitive Pilot решений будут созданы готовые продукты для пользователей, которые можно условно разделить на 3 категории: «MiniRadar», «Industrial» и «Imaging 4D». Подобные устройства активно применяются в самых разных отраслях, поэтому стоит рассказать о них подробнее.