Рубрика «распознавание изображений» - 3

Как распознать картинки и тексты на телефоне с помощью ML Kit - 1

Два года назад Сундар Пичаи, глава Google, рассказал о том, что компания из mobile-first становится AI-first и фокусируется на машинном обучении. Год спустя вышел Machine Learning Kit — набор инструментов, с которым можно эффективно использовать ML на iOS и Android.

Об ML Kit очень много говорят в США, но на русском языке информации почти нет. А так как мы используем его для некоторых задач в Яндекс.Деньгах, я решил поделиться опытом и показать на примерах, как с его помощью можно делать интересные вещи.

Меня зовут Юра, последний год я работаю в команде Яндекс.Денег над мобильным кошельком. Мы поговорим про машинное обучение в мобайле.

Читать полностью »

Теперь фреймворк Vision умеет распознавать текст по-настоящему, а не как раньше. С нетерпением ждём, когда сможем применить это в Dodo IS. А пока перевод статьи о распознавании карточек из настольной игры Magic The Gathering и извлечении из них текстовой информации.

Как распознать текст с фото: новые возможности фреймворка Vision - 1
Читать полностью »

Привет! Весной 2019 года прошел очередной Think Developers Workshop, на котором все желающие могли собрать картонного робота TJBota под управлением IBM Watson Services. Под катом находится подробная инструкция, из чего и как собрать такого робота, полезные ссылки и простейшие рецепты, демонстрирующие некоторые когнитивные возможности сервисов Watson, а также небольшой анонс двух июльских семинаров о Watson Services в московском офисе IBM.

image

Читать полностью »

В МТИ создали модель ИИ, которая распознает и изменяет состав пиццы - 1

Исследователи Массачусетского технологического института нашли еще одно применение для технологий распознавания изображений. Разработанная ими модель PizzaGAN определяет набор ингредиентов в пицце по фотографии и вносит в нее коррективы, добавляя или убирая любые топпинги по запросу.
Читать полностью »

Разработка российской команды реалистично анимирует лица по одному кадру - 1

Новый проект от группы российских исследователей из Сколково знаменует очередной этап в развитии технологий распознавания и генерации лиц. Созданная ими нейросеть синтезирует динамичные изображения людей на базе любого числа доступных изображений, начиная с одного.
Читать полностью »

Ограниченность алгоритмов распознавания изображений - 1

Нет, речь пойдет не об алгоритмах распознавания изображений – речь пойдет об ограниченности их использования, в частности при создании ИИ.

По моему мнению, распознавание визуальных образов человеком и компьютерной системой сильно различается – настолько сильно, что имеет между собой мало общего. Когда человек говорит «Я вижу», на самом деле он более мыслит, чем видит, чего не скажешь о компьютерной системе, снабженной оборудованием для распознавания изображений.

Знаю, мысль не нова, но предлагаю еще раз убедиться в ее справедливости на примере робота, претендующего на обладание интеллектом. Тестовый вопрос звучит так: каким робот должен видеть окружающий мир, чтобы полностью уподобиться человеку?
Читать полностью »

Наверное, в этом тексте для многих не будет новизны. Наверное, другие скажут что такого не бывает в реальной жизни. Но, уже не первое апреля, а всё написанное тут — чистая правда, которая случалась со мной или с людьми вокруг. Возможно что-то из сказанного заставит вас переосмыслить окружающие вас феномены.
Если подходить к этим историям формально, то можно сказать что все они порождены тем что люди не учитывают ошибку второго рода. У Юдковского, с коим знакома четверть Хабра — эта ошибка обычно зовётся «Подтверждающее искажение»
Краткий гайд по созданию оракулов, богов из машины и ошибкам второго рода - 1
Что это такое? В двух словах — «человек ищет подтверждение своей модели, а не её опровержение». Единственный шанс объяснить лучше, это примеры-примеры-примеры и опыт. Лишь так можно развить чувство что «что-то тут не так».
Мне кажется, что этот короткий рассказ позволят вам посмотреть на ошибки второго рода с совсем другой стороны. Со стороны того, как они уже вошли в нашу жизни, влияют на практически каждое решение. И помогают нам делать богов из окружающих технологий. В машинном обучении я наталкиваюсь на это каждый день.
Читать полностью »

Распознавание танков в видеопотоке методами машинного обучения (+2 видео на платформах Эльбрус и Байкал) - 1

В процессе своей деятельности мы ежедневно сталкиваемся с проблемой определения приоритетов развития. Учитывая высокую динамику развития IT индустрии, постоянно возрастающую востребованность со стороны бизнеса и государства к новым технологиям, каждый раз, определяя вектор развития и инвестируя собственные силы и средства в научный потенциал нашей компании, мы следим за тем, чтобы все наши исследования и проекты носили фундаментальный и междисциплинарный характер.

Читать полностью »

image

Поднебесная — весьма высокотехнологичное государство. Да, страну ругают за наплевательское отношение к неприкосновенности частной информации, которая собирается самыми разными методами. Но с этим вряд ли можно что-то поделать в ближайшем обозримом будущем.

Пока же Китай вводит самые разные системы идентификации граждан. Какие-то из них объединены в единую сеть, какие-то — пока нет. Среди прочих систем можно вспомнить видеонаблюдение за учениками в школах с привлечением ИИ к анализу поведения детей и подростков, распознавание лиц для обнаружения нарушителей ПДД, распознавание лиц полицией, систему социального рейтинга и многое другое. Сейчас добавилась еще одна система — распознавание лиц в метро. Технология используется для быстрого проведения платежа за проезд.
Читать полностью »

Как мы научили нейросеть определять документы - 1

Этим летом мы научили нейронную сеть определять, присутствует ли на изображении документ, и если да — то какой именно.

Для чего это понадобилось

Чтобы разгрузить сотрудников и обезопасить людей от мошенников. Мы применяем новую нейросеть в двух сферах: когда пользователь восстанавливает доступ к странице и для скрытия личных документов из общего поиска.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js