Рубрика «математика» - 64

Всем привет. Меня зовут Данила, я работаю в команде, которая развивает аналитическую инфраструктуру в Авито. Центральное место в этой инфраструктуре занимает А/B-тестирование.

А/B эксперименты — ключевой инструмент принятия решений в Авито. В нашем цикле продуктовой разработки А/B-тест является обязательным этапом. Мы проверяем каждую гипотезу и выкатываем только позитивные изменения.

Мы собираем сотни метрик и умеем детализировать их до бизнес-разрезов: вертикали, регионы, авторизованные пользователи и т. д. Мы делаем это автоматизированно с помощью единой платформы для экспериментов. В статье я достаточно подробно расскажу, как платформа устроена и мы с вами погрузимся в некоторые интересные технические детали.

Как устроено A-B-тестирование в Авито - 1

Читать полностью »

Посмотрев лекцию профессора Робина Уилсона о тождестве Эйлера, я наконец смог понять, почему тождество Эйлера является самым красивым уравнением. Чтобы поделиться моим восхищением это темой и укрепить собственные знания, я изложу заметки, сделанные во время лекции. А здесь вы можете купить его прекрасную книгу.

Что может быть более загадочным, чем взаимодействие мнимых чисел с вещественными, в результате дающее ничто? Такой вопрос задал читатель журнала Physics World в 2004 году, чтобы подчеркнуть красоту уравнения Эйлера «e в степени i, умноженного на пи равно минус единице».

Самая красивая теорема математики: тождество Эйлера - 1

Рисунок 1.0: тождество Эйлера — e в степени i, умноженного на пи, плюс единица равно нулю.

Ещё раньше, в 1988 году, математик Дэвид Уэллс, писавший статьи для американского математического журнала The Mathematical Intelligencer, составил список из 24 теорем математики и провёл опрос, попросив читателей своей статьи выбрать самую красивую теорему. И после того, как с большим отрывом в нём выиграло уравнение Эйлера, оно получило званием «самого красивого уравнения в математике».
Читать полностью »

Я выскажу довольно парадоксальное мнение, что вплоть до эпохи пара (привет, Steam punk!)

Нужна ли людям математика? - 1

Математика, хотя и была очень желательна и помогала людям, не была обязательна. То есть можно, теоретически, представить себе цивилизацию, построившую паровозы, но умеющую разве что делить и умножать.
Читать полностью »

Общеизвестно, что большинство временных рядов, с которыми приходится иметь дело исследователю, являются нестационарными, и их анализ ощутимо сложнее, чем изучение стационарных процессов. Поскольку интерес к вейвлетам, похоже, пошел на убыль, полезно обсудить некоторые иные «нестационарные» инструменты, пригодные, в первую очередь, для оценки мгновенных частот, а также для оценки мгновенных спектров.

В первую очередь есть смысл вспомнить об «аналитическом сигнале». Ниже «An-моделью» именуются как раз нахождение мгновенных импеданса и мощности тестового сигнала после достройки его мнимой частью (сдвинутой по фазе на π/2).

Но не всегда есть возможность возиться с преобразованием Гилберта. Ранее уже упоминалось об авторегрессионном способе спектрального оценивания, пригодном для работы с короткими последовательностями. Под «AR-моделью» здесь будет подразумеваться исследование коротких (из 5 сэмплов) перекрывающихся фрагментов исходного сигнала с целью определения коэффициентов авторегрессии 2-го порядка, нахождение по ним «полюсов» модели и т.д.

imageЧитать полностью »

В этих играх сочетаются квантовая запутанность, бесконечности и невозможность подсчёта вероятности выигрыша. Но если исследователи сумеют раскусить их, они откроют нам глубокие секреты математики.

В квантовых играх не получится рассчитывать на удачу - 1

В 1950-х четыре военнослужащих армии США, увлекавшихся математикой, использовали примитивные электронные калькуляторы для расчёта оптимальной стратегии игры в блэкджек. Их результаты были позднее опубликованы в журнале американской статистической ассоциации, и описывали наилучшие решения, которые может принимать игрок в любой ситуации в игре.

Однако такая стратегия, которую любители азартных игр позже окрестят «правилами» [the book], не гарантирует победы игроку. У блэкджека, а также пасьянса, шашек или множества других игр, есть определённый «потолок» по проценту игр, в которые игрок может выиграть – даже если он будет каждый раз играть идеально.
Читать полностью »

image

Посвящается памяти Джона Форбса Нэша-младшего

Вы ведь помните, что такое «простые числа»? Эти числа не делятся ни на какие другие, кроме самих себя и 1. А теперь я задам вопрос, которому уже 3000 лет:

  • 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, p. Чему равно p? 31. Каким будет следующее p? 37. А следующее p ? 41. А следующее? 43. Да, но… как нам узнать, каким будет следующее значение?

Придумайте суждение или формулу, которые (хотя бы с грехом пополам) прогнозируют, каким будет следующее простое число, (в любом заданном ряду чисел), и ваше имя навечно будет связано с одним из величайших достижений человеческого мозга. Вы встанете в один ряд с Ньютоном, Эйнштейном и Гёделем. Разберитесь в поведении простых чисел, и можете потом всю жизнь почивать на лаврах.

Введение

Свойства простых чисел изучались многими великими людьми в истории математики. С первого доказательства бесконечности простых чисел Евклида до формулы произведения Эйлера, связавшей простые числа с дзета-функцией. От формулировки теоремы о простых числах Гаусса и Лежандра до её доказательства, придуманного Адамаром и Валле-Пуссеном. Тем не менее, Бернхард Риман до сих пор считается математиком, сделавшим единственное крупнейшее открытие в теории простых чисел. В его опубликованной в 1859 году статье, состоявшей всего из восьми страниц, были сделаны новые, ранее неизвестные открытия о распределении простых чисел. Эта статья по сей день считается одной из самых важных в теории чисел.

После публикации статья Римана оставалась главным трудом в теории простых чисел и на самом деле стала основной причиной доказательства в 1896 году теоремы о распределении простых чисел. С тех пор было найдено несколько новых доказательств, в том числе элементарные доказательства Сельберга и Эрдёша. Однако до сих пор остаётся загадкой гипотеза Римана о корнях дзета-функции.
Читать полностью »

Чтобы передать сообщение от базовой станции мобильному устройству (и наоборот), электромагнитной волне приходится преодолевать значительное количество препон: отражения, преломления, рассеивания, затенения, доплеровские смещения частот и так далее. Во-первых, все эти воздействия принято называть мультипликативными (от англ. multiplication — умножение) — по математической модели таких воздействий. А, во-вторых, можно собрать под общим термином замирания (fading).

От стандарта к стандарту, от поколения к поколению, от технологии к технологии ученые и инженеры бились и бьются над проблемой нивелирования этих замираний (fading mitigation).

И некоторые решения нашли широкое распространение. Скажем больше: почти все из них, так или иначе, связаны с понятием разнесения (diversity).

MIMO spatial diversity: Аламоути, DET и прочее пространственное разнесение - 1Читать полностью »

Дональд Кнут — учёный в области информатики, который настолько заботится о правильности своих книг, что предлагает один шестнадцатеричный доллар ($2,56, 0x$1,00) за любую найденную «ошибку», где ошибкой считается всё, что «технически, исторически, типографически или политически неправильно». Я очень хотел получить чек от Кнута, поэтому решил поискать ошибки в его выдающемся труде «Искусство программирования» (TAOCP). Удалось найти три. Верный слову, Кнут прислал чек на 0x$3,00.

Я получил от Кнута чек на 0x$3,00 - 1

Как видите, это не настоящий чек. Раньше Кнут отправлял реальные чеки, но прекратил в 2008 году из-за безудержного мошенничества. Теперь он рассылает «личные депозитные сертификаты» в банке Сан-Серрифф (BoSS). Он говорит, что готов выслать реальные деньги в случае необходимости, но, похоже, это слишком хлопотно.
Читать полностью »

В комментариях к одному из прошлых постов о решете Эратосфена был упомянут этот короткий алгоритм из Википедии:

Алгоритм 1:

1: для i := 2, 3, 4, ..., до n: 
2:  если lp[i] = 0:
3:       lp[i] := i
4:       pr[] += {i}
5:   для p из pr пока p ≤ lp[i] и p*i ≤ n:
6:       lp[p*i] := p
Результат:
 lp - минимальный простой делитель для кажого числа до n
 pr - список всех простых до n.

Алгоритм простой, но не всем он показался очевидным. Главная же проблема в том, что на Википедии нет доказательства, а ссылка на первоисточник (pdf) содержит довольно сильно отличающийся от приведенного выше алгоритм.

В этом посте я попытаюсь, надеюсь, доступно доказать, что этот алгоритм не только работает, но и делает это за линейную сложность.
Читать полностью »

Александр Ламден: «Любая железяка обладает характером» - 1

C 1968 по 1987 год в СССР серийно выпускалась БЭСМ-6 — первая советская супер-ЭВМ на элементной базе второго поколения (полупроводниковых транзисторах). Всего таких машин было 355. Машину под номером 32 с 1972 по 1991 год обслуживал Александр Ламден. Сначала как техник, позже как наладчик и инженер.

Мы продолжаем дополнять музейную коллекцию DataArt интервью об истории ИТ. Мы уже публиковали рассказы Сергея Зонова, создателя одного из главных клонов «Спектрума», и Евгения Каневского, разрабатывавшего ЭДВМ и «Искру-226». Александр Ламден рассказал нам о рабочем дне вычислительного центра, задачах, которые ставили перед советскими супер-ЭВМ, и судьбе этих машин.Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js