Рубрика «искусственный интеллект» - 148

Банк Тинькофф тестирует технологию алгоритмического кэшбэка с рекомендательными моделями — Tinkoff RECO, называет её не имеющей аналогов в мире.

Tinkoff RECO — это «семейство современных ИИ-алгоритмов», которые два года анализировали покупки 8 млн клиентов банка и теперь умеют на основе истории транзакций предугадывать, что человек захочет купить, чтобы предложить персональный кэшбек.

Читать полностью »

Это пост-вопрос, в нем я попробовал сформулировать основные проблемы нейросетей, решение которых может сделать прорыв в технологии ИИ. В основном речь о сетях, что работают с текстом (GPT, BERT, ELMO и т.п.). Как известно, хорошая формулировка задачи — половина ее решения. Но сам я эти решения найти не могу. Надеюсь на «помощь зала», так как тут много тех, кто сталкивается с такими же проблемами и возможно «видит» их решение.

Итак.

1. Самое казалось бы простое, но нейросеть не учитывает факты. Нейросеть выучивается на частных фактах, но как бы не знает о них. На когнитивном языке NN обладает семантической, а не эпизодической памятью грубо говоря. Сеть учат выдавать наиболее релевантные ответы, но их база всегда не полна (покрытие никогда не приблизится к 100%).
Читать полностью »

3 августа в наших соцсетях выступал Сергей Ширкин, специалист по ML и искусственному интеллекту.

Сергей занимался автоматизацией финансовых технологий и базами данных в «Сбербанке» и «Росбанке», построением финансовых моделей на основе машинного обучения и аналитической деятельностью в компании Equifax. Прогнозирует телесмотрение с применением методов искусственного интеллекта в Dentsu Aegis Network Russia. Приглашённый преподаватель ВШЭ (магистерская программа «Коммуникации, основанные на данных»).

Также Сергей исследует квантовые вычисления в приложении к ИИ и машинному обучению. Он стоит у истоков факультетов Искусственного интеллекта, Аналитики Big Data и Data Engineering онлайн-университета Geek University, на которых работает деканом и преподавателем.

Делимся с вами расшифровкой эфира и записью.

***

Меня зовут Сергей Ширкин, сегодня мы поговорим об искусственном интеллекте. Обсудим начальные пути – как попасть в искусственный интеллект, как обучиться необходимым предметам, какие курсы пройти, какую литературу читать, как начать карьеру. Также про различные направления.

Сегодняшние темы могут быть интересны не только новичкам, но и опытным программистам – например, как перейти из сферы программирования в сферу машинного обучения, искусственного интеллекта, нейронных сетей. В зависимости от того, в какой технологии человек занимается и какие языки изучает, практичный переход в эту сферу может проходить по-разному. Специальностей в ИИ очень много.
Читать полностью »

Непобедимый - 1

Время действия близкое будущее… Ближе чем вы думаете...

— Первая цель уничтожена! Объект летит в направлении следующих целей! — инженер оторвал взгляд от мониторов и с восторгом повернулся к круглому столу, за которым сидели члены комиссии Читать полностью »

Data Fest пройдет в этом году в онлайн формате 19 и 20 сентября 2020. Фестиваль организован сообществом Open Data Science и как обычно соберет исследователей, инженеров и разработчиков в области анализа данных, искусственного интеллекта и машинного обучения.

Регистрация. Ну а дальше к деталям.

Data Fest 2020 — полностью в Online уже завтра - 1Читать полностью »

image
Источник фото
Карликовая многозубка, самое маленькое млекопитающее по массе. Внутри маленький целостный сложный мозг, который уже принципиально можно картировать

Короткий ответ — можно, но не полную и не очень точную. То есть мы ещё не можем скопировать её сознание, но приблизились к этому как никогда. Проживите ещё лет двадцать — и, возможно, ваш мозг тоже получится забэкапить.

Чтобы приблизиться к оцифровке сознания и такому экзотическому виду бессмертия, стоит сначала разобраться с живыми нейронными сетями. Их реверс-инжиниринг показывает нам, как вообще может быть устроен процесс мышления (вычислений) в хорошо оптимизированных системах.

60 лет назад, 13 сентября 1960 года, учёные собрали первый симпозиум из биологов и инженеров, чтобы они могли разобраться, в чём же разница между сложной машиной и организмом. И есть ли она вообще. Науку назвали бионикой, а целью обозначили применение методов биологических систем к прикладной инженерии и новым технологиям. Биосистемы рассматривались как высокоэффективные прототипы новой техники.

Военный нейроанатом Джек Стил стал одним из людей, заметно повлиявших на дальнейший прогресс в области технологий, в том числе в области ИИ, где развитие получили такие направления, как нейроморфная инженерия и биоинспирированные вычисления. Стил был медиком, разбирался в психиатрии, увлекался архитектурой, умел управлять самолётом и сам чинил свою технику, то есть был вполне неплохим прикладным инженером. Научная работа Стила стала прообразом сценария фильма «Киборг». Так что с некоторой натяжкой можно назвать его прадедушкой Терминатора. А где Терминатор, там и Скайнет, как известно.

Этот пост написан на основе материалов будущей книги нашего коллеги Сергея Маркова «Охота на электроовец: большая книга искусственного интеллекта».
Читать полностью »

Когда за три недели до окончания съемок «Гладиатора» умер Оливер Рид – актер, игравший роль тренера гладиаторов Антония Проксимо, – создателям фильма пришлось срочно переписывать сценарий так, чтобы Проксимо погиб по ходу действия, а недостающие сцены создавать с помощью дублера и компьютерных эффектов. Тогда, 21 год назад, 160 секунд киноленты с участием «цифрового Рида» обошлись в 3,2$ млн. А сейчас благодаря развитию технологий, по нашим оценкам, можно было сократить бюджет раз в тридцать, и за эти деньги не просто сделать цифрового двойника актера (digital double) для нескольких сцен, а создать его полную гиперреалистичную 3D-модель и дальше снимать с ней кино без ограничений во времени и пространстве. Наша команда как раз и работает над созданием таких аватаров. В этом посте я расскажу, зачем они нужны помимо кино и что любопытного мы узнали во время собственных экспериментов.

Мой новый коллега – цифровой аватар. Как и зачем компании создают фотореалистичные 3D-модели людей - 1

Читать полностью »

В Сколтехе предсказали сверхтвердые материалы с помощью ИИ - 1

Ученые из Сколтеха создали модель нейронной сети, вычисляющую сверхтвердые материалы. Обнаружено, что помимо алмазов возможно существование и других сверхтвердых веществ.

Сверхтвердые материалы интересны ученым, поскольку применимы во многих отраслях: добыча нефти, металлообработка, ювелирное дело, станкостроение, микроэлектроника, производство высоких технологий. Их используют при бурении, резке, полировании, шлифовании. Поэтому важно обнаружение новых соединений, обладающих свойствами сверхтвердых материалов.
Читать полностью »

Мечтают ли голосовые ассистенты о электропоэзии? Интервью с Татьяной Ландо: лингвистом-аналитиком Google - 1


24 августа мы поговорили в прямом эфире с Татьяной Ландо, лингвистом-аналитиком в Google. Татьяна работает над Google-ассистентом и занимается проектами между продакшеном и рисерчем. Она исследует, как люди разговаривают друг с другом и какие стратегии используют, чтобы использовать это в обучении ассистента более человеческому поведению. В Google пришла работать над ассистентом для русского рынка и русского языка. До этого 8 лет работала в Яндексе. Занималась лингвистическими технологиями, извлечением фактов из неструктурированного текста. Татьяна одна из основателей конфернции AINL: Artificial Intelligence and Natural Language Conference.

Делимся с вами расшифровкой эфира.
Читать полностью »

Стагнация машинного обучения. Многие задачи не будут решены никогда? - 1

Последние годы глубокого обучения — сплошная череда достижений: от победы над людьми в игре Го до мирового лидерства в распознавании изображений, голоса, переводе текста и других задачах. Но этот прогресс сопровождается ненасытным ростом аппетита к вычислительной мощности. Группа ученых из MIT, Университета Ёнсе (Корея) и Университета Бразилиа опубликовала метаанализ 1058 научных работ по машинному обучению. Он явно показывает, что прогресс в области машинного обучения (ML) — это производная от вычислительной мощности системы. Производительность компьютеров всегда ограничивала функциональность ML, но сейчас потребности новых моделей ML растут гораздо быстрее, чем производительность компьютеров.

Исследование демонстрирует, что достижения машинного обучения по сути — немногим более чем следствие закона Мура. И по этой причине многие задачи ML не будут решены никогда в силу физических ограничений вычислителя.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js