Рубрика «neural networks» - 3

Привет, любители Habr! По счастливой случайности в августе 2018 года мне посчастливилось вместе с моим товарищем(kirillskiy) начать работать над потрясающим по своей интересности проектом. И вот, днем мы были обычными программистами, а ночью с̶у̶п̶е̶р̶г̶е̶р̶о̶я̶м̶и̶ снова программистами, которые бьются над вопросами распознавания движений для людей имеющих ограничения функциональности своих конечностей, естественно этим могли бы пользоваться и здоровые люди, используя подобную технологию самыми разными способами.
Читать полностью »

Пример распознавания номерных знаков
Все начиналось банально — моя компания уже год платила ежемесячно плату за сервис, который умел находить регион с номерными знаками на фото. Эта функция применяется для автоматической зарисовки номера у некоторых клиентов.

И в один прекрасный день МВД Украины открыло доступ к реестру транспортных средств. Теперь по номерному знаку стало возможным проверять некоторую информацию про автомобиль (марку, модель, год выпуска, цвет и т.д. )! Скучная рутина линейного программирования померкла перед новой свехзадачей — считывать номера по всей базе фото и валидировать эти данные с теми, что указывал пользователь. Сами знаете как это бывает «глаза загорелись» — вызов принят, все остальные задачи на время стали скучны и монотонны… Мы принялись за работу и получили неплохие результаты, чем, собственно и решили поделиться с сообществом.

Для справки: на сайт AUTO.RIA.com, в день добавляется около 100 000 фото.

Датасаентисты давно уже знают и умеют решать подобные задачи, поэтому мы с dimabendera написали эту статью именно для программистов. Если вы не боитесь словосочетания «сверточные сети» и умеете писать «Hello World» на питоне — милости просим под кат…
Читать полностью »

С распространением и развитием нейронный сетей все чаще возникает потребность их использования на встроенных и маломощных устройствах, роботах и дронах. Устройство Neural Compute Stick в связке с фреймворком OpenVINO от компании Intel позволяет решить эту задачу, беря тяжелые вычисления нейросетей на себя. Благодаря этому можно без особых усилий запустить нейросетевой классификатор или детектор на маломощном устройстве вроде Raspberry Pi практически в реальном времени, при этом не сильно повышая энергопотребление. В данной публикации я расскажу, как использовать фреймворк OpenVINO (на C++) и Neural Compute Stick, чтобы запустить простую систему обнаружения лиц на Raspberry Pi.

Как обычно, весь код доступен на GitHub.

Запускаем свой нейросетевой детектор на Raspberry Pi с помощью Neural Compute Stick и OpenVINO - 1
Читать полностью »

То, о чем говорили сторонники Open Source с 1980-х — свершилось! Сегодня архитектура процессоров MIPS стала Open Source. Учитывая, что такие компании как Broadcom, Cavium, китайский ICT и Ingenic платили MIPS за архитектурную лицензию (право сделать совместимую по системе команд микроархитектурную реализацию) миллионы долларов (иногда более десяти миллионов), это историческая веха. Теперь у RISC/V нет преимущества в этом аспекте, да и ARM придется оправдываться. У MIPS до сих пор есть технические преимущества перед RISC/V — лучшая плотность кода у nanoMIPS, лучшая поддержка аппаратной многопоточности, лучшие бенчмарки на high-end ядрах, более полная экосистема. И 8 миллиардов выпущенных чипов на основе MIPS.

Вот команда разработчиков 64-битного процессорного ядра MIPS I6400 «Samurai» и MIPS I6500 «Daimyo» в Сан-Франциско. Это ядро лицензировала в частности японская компания автомобильной электроники DENSO, поставщик Тойоты:

Сегодня MIPS стал Open Source, против RISC-V и ARM. Как Россия повлияла на стратегию американской процессорной компании - 1

А вот представители российской компании ЭЛВИС-НеоТек вместе с русскими, украинскими и казахстанским разработчиком ядер MIPS и софтвера для него. ЭЛВИС-НеоТек является как лицензиатом ядер MIPS, так и разработчиком собственного по микроархитектуре ядра, совместимого с архитектурой MIPS. А также аппаратных блоков видео-обработки и алгоритмов распознавания:

Сегодня MIPS стал Open Source, против RISC-V и ARM. Как Россия повлияла на стратегию американской процессорной компании - 2

Российское MIPS-коммьюнити оказано непосредственное влияние на этот шаг:
Читать полностью »

image

Когда-то Стив Джобс и Стив Возняк закрылись в гараже и выкатили первый Mac. Было бы классно, если всегда можно было закрыть программистов в гараже и получить MVP с большим потенциалом. Однако, если добавить к программистам пару людей, готовых оценивать пользовательский опыт и искать что-то инновационное, то шансы на успех растут.

У нашей команды из 5 человек появилась определённая идея, ради которой мы решили слегка захватить мир похакатонить.

Читать полностью »

Достижения в области искусственного интеллекта у всех на слуху, объемы рынка оцениваются в 1,2 трлн долл. США к концу 2018 года. В пятилетней перспективе большинство специалистов говорит об увеличении рынка чуть ли не на порядок.

И вот совсем лаконичный факт — количество патентов только по точному запросу в наименовании «artificial intelligence»/искусственный интеллект, т.е. даже не принимая в расчет сходные термины «neural network»/нейронные сети, «machine learning»/машинное обучение и пр., по состоянию на начало ноября 2018 г.:

  • Google (Alphabet) — 1 430 патентов,
  • Apple — 592 патента,
  • Китай всего — более 7 000 патентов,
  • Всего в мире — более 100 тыс. патентов (эти и аналогичные данные можно увидеть и проанализировать на открытом ресурсе Google Patent или других агрегаторах).

И, внимание(!!!):

  • Россия – 17 патентов (база данных Роспатента, также есть в открытом доступе), содержащих в наименовании термин «искусственный интеллект» и 657 патентов (это с учетом незавершенных и отмененных), содержащих термин «искусственный интеллект» в описании.

Искусственный интеллект. Интеллектуальная собственность. Danger - 1

Читать полностью »

NeurIPS –– конференция, которая на данный момент считается самым топовым событием в мире машинного обучения. Сегодня я расскажу вам о своем опыте участия в конкурсах NeurIPS: как потягаться с лучшими академиками мира, занять призовое место и опубликовать статью.

NeurIPS: как покорить лучшую конференцию по ML - 1Читать полностью »

Как мы заменили спортивного скаута нейронной сетью - 1
Да, действительно, мы смогли заменить нейронной сетью спортивного скаута и стали автоматически собирать данные об игре. И теперь знаем о спортивном состязании больше присутствующего на нем зрителя, а иногда и судьи.
Читать полностью »

Оптическое распознавание символов (OCR) — это процесс получения печатных текстов в оцифрованном формате. Если вы прочитали классический роман на цифровом устройстве или попросили врача поднять старые медицинские записи через компьютерную систему больницы, вы, вероятно, воспользовались OCR.

OCR делает ранее статический контент доступным для редактирования, доступным для поиска и для обмена. Но многие документы, стремящиеся к оцифровке, содержат кофейные пятна, выцветшие солнечные пятна, страницы с загнутыми уголками и множество морщин сохраняют некоторые печатные документы в не оцифрованном виде.

Всем давно известно, что существуют миллионы старых книг, которые хранятся в хранилищах. Использование этих книг запрещено по причине их ветшалости и дряхлости, и поэтому оцифровка этих книг столь важна.

В работе рассматривается задача очистки текста от зашумленности, распознавание текста на изображении и конвертации его в текстовый формат.

image

Для обучения использовалось 144 картинки. Размер может быть разным, но желательно должен быть в пределах разумного. Картинки должны иметь формат PNG. После считывании изображения используется бинаризация – процесс преобразования цветного изображения в черно-белое, то есть каждый пиксель нормализуется в диапазон от 0 до 255, где 0 – это черный, 255 – белый.

Чтобы обучить сверточную сеть, нужно больше изображений, чем имеется. Было принято решение разделить изображения на части. Так как обучающая выборка состоит из картинок разного размера, каждое изображение было сжато до 448х448 пикселей. В результате получилось 144 изображения в разрешении 448х448 пикселей. После чего все они были нарезаны на неперекрывающиеся окна размером 112x112 пикселей.

Читать полностью »

image

Недавно я начал изучать machine learning. Начал с прекрасного, на мой взгляд, курса от Andrew Ng. И чтобы не забыть, а так же повторить выученное решил создать репозиторий Machine Learning in Octave. В нем я собрал математические формулы для гипотез, градиентных спусков, "cost function"-ов, сигмоидов и прочих фундаментальных для машинного обучения "штук". Так же добавил туда упрощенные и доработанные примеры реализации некоторых популярных алгоритмов (нейронная сеть, линейная/логистическая регрессия и пр.) для MatLab/Octave. Надеюсь эта информация будет полезна для тех из вас, кто планирует начать изучение machine learning-а.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js